Fuzzy and Crisp Logical Rule Extraction Methods in Application to Medical Data

Author(s):  
Włodzisław Duch ◽  
Rafał Adamczak ◽  
Krzysztof Grąbczewski ◽  
Grzegorz Żal ◽  
Yoichi Hayashi
Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1318
Author(s):  
Yoichi Hayashi ◽  
Naoki Takano

Convolution neural networks (CNNs) have proven effectiveness, but they are not applicable to all datasets, such as those with heterogeneous attributes, which are often used in the finance and banking industries. Such datasets are difficult to classify, and to date, existing high-accuracy classifiers and rule-extraction methods have not been able to achieve sufficiently high classification accuracies or concise classification rules. This study aims to provide a new approach for achieving transparency and conciseness in credit scoring datasets with heterogeneous attributes by using a one-dimensional (1D) fully-connected layer first CNN combined with the Recursive-Rule Extraction (Re-RX) algorithm with a J48graft decision tree (hereafter 1D FCLF-CNN). Based on a comparison between the proposed 1D FCLF-CNN and existing rule extraction methods, our architecture enabled the extraction of the most concise rules (6.2) and achieved the best accuracy (73.10%), i.e., the highest interpretability–priority rule extraction. These results suggest that the 1D FCLF-CNN with Re-RX with J48graft is very effective for extracting highly concise rules for heterogeneous credit scoring datasets. Although it does not completely overcome the accuracy–interpretability dilemma for deep learning, it does appear to resolve this issue for credit scoring datasets with heterogeneous attributes, and thus, could lead to a new era in the financial industry.


2010 ◽  
Vol 37 (8) ◽  
pp. 5577-5589 ◽  
Author(s):  
M.A.H. Farquad ◽  
V. Ravi ◽  
S. Bapi Raju

2018 ◽  
pp. 113-119
Author(s):  
Iryna Perova ◽  
Yevgeniy Bodyanskiy

Feature Selection task is one of the most complicated and actual in the areas of Data Mining and Human Machine Interaction. Many approaches to its solving are based on non-mathematical and presentative hypothesis. New approach to evaluation of medical features information quantity, based on optimized combination of feature selection and feature extraction methods is proposed. This approach allows us to produce optimal reduced number of features with linguistic interpreting of each of them. Hybrid system of feature selection/extraction based on Neural Network-Physician interaction is investigated. This system is numerically simple, can produce feature selection/extraction with any number of factors in online mode using neural network-physician interaction based on Oja’s neurons for online principal component analysis and calculating distance between first principal component and all input features. A series of experiments confirms efficiency of proposed approaches in Medical Data Mining area and allows physicians to have the most informative features without losing their linguistic interpreting.


Sign in / Sign up

Export Citation Format

Share Document