The Application of Satellite Remote Sensing for Classifying Forest Degradation and Deriving Above-Ground Biomass Estimates

Author(s):  
Andreas Langner ◽  
Jupiri Titin ◽  
Kanehiro Kitayama
2020 ◽  
Vol 12 (20) ◽  
pp. 3351
Author(s):  
Sawaid Abbas ◽  
Man Sing Wong ◽  
Jin Wu ◽  
Naeem Shahzad ◽  
Syed Muhammad Irteza

Tropical forests are acknowledged for providing important ecosystem services and are renowned as “the lungs of the planet Earth” due to their role in the exchange of gasses—particularly inhaling CO2 and breathing out O2—within the atmosphere. Overall, the forests provide 50% of the total plant biomass of the Earth, which accounts for 450–650 PgC globally. Understanding and accurate estimates of tropical forest biomass stocks are imperative in ascertaining the contribution of the tropical forests in global carbon dynamics. This article provides a review of remote-sensing-based approaches for the assessment of above-ground biomass (AGB) across the tropical forests (global to national scales), summarizes the current estimate of pan-tropical AGB, and discusses major advancements in remote-sensing-based approaches for AGB mapping. The review is based on the journal papers, books and internet resources during the 1980s to 2020. Over the past 10 years, a myriad of research has been carried out to develop methods of estimating AGB by integrating different remote sensing datasets at varying spatial scales. Relationships of biomass with canopy height and other structural attributes have developed a new paradigm of pan-tropical or global AGB estimation from space-borne satellite remote sensing. Uncertainties in mapping tropical forest cover and/or forest cover change are related to spatial resolution; definition adapted for ‘forest’ classification; the frequency of available images; cloud covers; time steps used to map forest cover change and post-deforestation land cover land use (LCLU)-type mapping. The integration of products derived from recent Synthetic Aperture Radar (SAR) and Light Detection and Ranging (LiDAR) satellite missions with conventional optical satellite images has strong potential to overcome most of these uncertainties for recent or future biomass estimates. However, it will remain a challenging task to map reference biomass stock in the 1980s and 1990s and consequently to accurately quantify the loss or gain in forest cover over the periods. Aside from these limitations, the estimation of biomass and carbon balance can be enhanced by taking account of post-deforestation forest recovery and LCLU type; land-use history; diversity of forest being recovered; variations in physical attributes of plants (e.g., tree height; diameter; and canopy spread); environmental constraints; abundance and mortalities of trees; and the age of secondary forests. New methods should consider peak carbon sink time while developing carbon sequestration models for intact or old-growth tropical forests as well as the carbon sequestration capacity of recovering forest with varying levels of floristic diversity.


2021 ◽  
Vol 7 (5) ◽  
pp. 84
Author(s):  
Ram C. Sharma

Utilization of the Bidirectional Reflectance Distribution Function (BRDF) model parameters obtained from the multi-angular remote sensing is one of the approaches for the retrieval of vegetation structural information. In this research, the potential of multi-angular vegetation indices, formulated by the combination of multi-spectral reflectance from different view angles, for the retrieval of forest above-ground biomass was assessed in the New England region. The multi-angular vegetation indices were generated by the simulation of the Moderate Resolution Imaging Spectroradiometer (MODIS) BRDF/Albedo Model Parameters Product (MCD43A1 Version 6)-based BRDF parameters. The effects of the seasonal (spring, summer, autumn, and winter) composites of the multi-angular vegetation indices on the above-ground biomass, the angular relationship of the spectral reflectance with above-ground biomass, and the interrelationships between the multi-angular vegetation indices were analyzed. Among the existing multi-angular vegetation indices, only the Nadir BRDF-adjusted NDVI and Hot-spot incorporated NDVI showed significant relationship (more than 50%) with the above-ground biomass. The Vegetation Structure Index (VSI), newly proposed in the research, performed in the most efficient way and explained 64% variation of the above-ground biomass, suggesting that the right choice of the spectral channel and observation geometry should be considered for improving the estimates of the above-ground biomass. In addition, the right choice of seasonal data (summer) was found to be important for estimating the forest biomass, while other seasonal data were either insensitive or pointless. The promising results shown by the VSI suggest that it could be an appropriate candidate for monitoring vegetation structure from the multi-angular satellite remote sensing.


Author(s):  
Nathalie Pettorelli

This chapter explores how satellite remote sensing can be employed to monitor a wide range of anthropogenic pressures which affect species and ecosystems, in both terrestrial and marine systems. First, it reviews the literature on the use of satellite data to monitor deforestation and forest degradation. It then explores how these data can be used to monitor fragmentation, which is another form of habitat degradation that can represent an important threat to the preservation of biological diversity. This is followed by a review of the use of satellite remote sensing information to monitor urbanisation, night-time light pollution, oil exploration and exploitation, mineral extraction activities, oil spills and run-off, and illegal fishing. The chapter concludes by discussing opportunities for satellite remote sensing to monitor and predict the impact of climate change on biodiversity.


2010 ◽  
Vol 53 (S1) ◽  
pp. 176-183 ◽  
Author(s):  
Min Xu ◽  
ChunXiang Cao ◽  
QingXi Tong ◽  
ZengYuan Li ◽  
Hao Zhang ◽  
...  

Forests ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 582 ◽  
Author(s):  
Lin Chen ◽  
Chunying Ren ◽  
Bai Zhang ◽  
Zongming Wang ◽  
Yanbiao Xi

Accurate forest above-ground biomass (AGB) is crucial for sustaining forest management and mitigating climate change to support REDD+ (reducing emissions from deforestation and forest degradation, plus the sustainable management of forests, and the conservation and enhancement of forest carbon stocks) processes. Recently launched Sentinel imagery offers a new opportunity for forest AGB mapping and monitoring. In this study, texture characteristics and backscatter coefficients of Sentinel-1, in addition to multispectral bands, vegetation indices, and biophysical variables of Sentinal-2, based on 56 measured AGB samples in the center of the Changbai Mountains, China, were used to develop biomass prediction models through geographically weighted regression (GWR) and machine learning (ML) algorithms, such as the artificial neural network (ANN), support vector machine for regression (SVR), and random forest (RF). The results showed that texture characteristics and vegetation biophysical variables were the most important predictors. SVR was the best method for predicting and mapping the patterns of AGB in the study site with limited samples, whose mean error, mean absolute error, root mean square error, and correlation coefficient were 4 × 10−3, 0.07, 0.08 Mg·ha−1, and 1, respectively. Predicted values of AGB from four models ranged from 11.80 to 324.12 Mg·ha−1, and those for broadleaved deciduous forests were the most accurate, while those for AGB above 160 Mg·ha−1 were the least accurate. The study demonstrated encouraging results in forest AGB mapping of the normal vegetated area using the freely accessible and high-resolution Sentinel imagery, based on ML techniques.


2020 ◽  
Vol 18 (07) ◽  
pp. 1288-1295
Author(s):  
Erith Munoz ◽  
Alfonso Zozaya ◽  
Erik Lindquist

Sign in / Sign up

Export Citation Format

Share Document