2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Wei Xiong ◽  
Lei Zhou ◽  
Ling Yue ◽  
Lirong Li ◽  
Song Wang

AbstractBinarization plays an important role in document analysis and recognition (DAR) systems. In this paper, we present our winning algorithm in ICFHR 2018 competition on handwritten document image binarization (H-DIBCO 2018), which is based on background estimation and energy minimization. First, we adopt mathematical morphological operations to estimate and compensate the document background. It uses a disk-shaped structuring element, whose radius is computed by the minimum entropy-based stroke width transform (SWT). Second, we perform Laplacian energy-based segmentation on the compensated document images. Finally, we implement post-processing to preserve text stroke connectivity and eliminate isolated noise. Experimental results indicate that the proposed method outperforms other state-of-the-art techniques on several public available benchmark datasets.


2012 ◽  
Vol 18 (4) ◽  
pp. 667-675 ◽  
Author(s):  
Paul Cueva ◽  
Robert Hovden ◽  
Julia A. Mundy ◽  
Huolin L. Xin ◽  
David A. Muller

AbstractThe high beam current and subangstrom resolution of aberration-corrected scanning transmission electron microscopes has enabled electron energy loss spectroscopy (EELS) mapping with atomic resolution. These spectral maps are often dose limited and spatially oversampled, leading to low counts/channel and are thus highly sensitive to errors in background estimation. However, by taking advantage of redundancy in the dataset map, one can improve background estimation and increase chemical sensitivity. We consider two such approaches—linear combination of power laws and local background averaging—that reduce background error and improve signal extraction. Principal component analysis (PCA) can also be used to analyze spectrum images, but the poor peak-to-background ratio in EELS can lead to serious artifacts if raw EELS data are PCA filtered. We identify common artifacts and discuss alternative approaches. These algorithms are implemented within the Cornell Spectrum Imager, an open source software package for spectroscopic analysis.


2016 ◽  
Author(s):  
Eric Truslow ◽  
Steven Golowich ◽  
Dimitris Manolakis

1991 ◽  
Vol 38 (3) ◽  
pp. 273-279 ◽  
Author(s):  
W.D. Timmons ◽  
H.J. Chizeck ◽  
P.G. Katona

Sign in / Sign up

Export Citation Format

Share Document