Utilization of Soil Microbes as a Temporal Nutrient Pool to Synchronize Nutrient Supply and Uptake: A Trial in the Dry Tropical Croplands of Tanzania

Author(s):  
Soh Sugihara ◽  
Method Kilasara
2021 ◽  
Author(s):  
Casey A. Easterday ◽  
Amy E. Kendig ◽  
Christelle Lacroix ◽  
Eric W. Seabloom ◽  
Elizabeth T. Borer

SummaryNutrient supply rates to hosts can mediate host–pathogen interactions. In terrestrial systems, nutrient supply to plants is mediated by soil microbes, suggesting a potential indirect effect of soil microbes on plant–pathogen interactions. Soil microbes also may affect plant pathogens by inducing plant defenses.We tested the role of soil microbes, nitrogen supply to plant hosts, and co-inoculation on infection by aphid-vectored RNA viruses, Barley Yellow Dwarf Virus (BYDV-PAV) and Cereal Yellow Dwarf Virus (CYDV-RPV), in a grass host grown in soil microbes collected from a long-term nitrogen enrichment experiment.BYDV-PAV incidence declined with high nitrogen supply, co-inoculation, or presence of soil microbes exposed to long-term low nitrogen enrichment. However, when combined, the negative effects of these treatments were sub-additive: nitrogen and co-inoculation did not reduce BYDV-PAV incidence in plants grown with the soil microbes. While soil microbes impacted leaf chlorophyll, they did not alter biomass or CYDV-RPV incidence.Soil microbes mediated the effects of nitrogen supply and co-inoculation on infection incidence and the effects of infection on host symptoms. Thus, soil microbial communities can indirectly control disease dynamics, altering the effects of nitrogen enrichment on plant–pathogen and pathogen–pathogen interactions in terrestrial systems.


2020 ◽  
Vol 85 ◽  
pp. 47-58
Author(s):  
Y Jiang ◽  
Y Liu

Various studies have observed that increased nutrient supply promotes the growth of bloom-forming cyanobacteria, but only a limited number of studies have investigated the influence of increased nutrient supply on bloom-forming cyanobacteria at the proteomic level. We investigated the cellular and proteomic responses of Microcystis aeruginosa to elevated nitrogen and phosphorus supply. Increased supply of both nutrients significantly promoted the growth of M. aeruginosa and the synthesis of chlorophyll a, protein, and microcystins. The release of microcystins and the synthesis of polysaccharides negatively correlated with the growth of M. aeruginosa under high nutrient levels. Overexpressed proteins related to photosynthesis, and amino acid synthesis, were responsible for the stimulatory effects of increased nutrient supply in M. aeruginosa. Increased nitrogen supply directly promoted cyanobacterial growth by inducing the overexpression of the cell division regulatory protein FtsZ. NtcA, that regulates gene transcription related to both nitrogen assimilation and microcystin synthesis, was overexpressed under the high nitrogen condition, which consequently induced overexpression of 2 microcystin synthetases (McyC and McyF) and promoted microcystin synthesis. Elevated nitrogen supply induced the overexpression of proteins involved in gas vesicle organization (GvpC and GvpW), which may increase the buoyancy of M. aeruginosa. Increased phosphorus level indirectly affected growth and the synthesis of cellular substances in M. aeruginosa through the mediation of differentially expressed proteins related to carbon and phosphorus metabolism. This study provides a comprehensive description of changes in the proteome of M. aeruginosa in response to an increased supply of 2 key nutrients.


2006 ◽  
Vol 34 (1) ◽  
pp. 569-572
Author(s):  
M. Lesznyák ◽  
Borbély Hunyadi

2019 ◽  
Vol 7 (1) ◽  
pp. 6-11
Author(s):  
Praveesh Bhati ◽  
Ritu Nagar ◽  
Anurag Titov

The decay of leaf litter by microflora and fauna furnish nutrient supply to the soil and also uphold ecological sustainability. Applying of proper technique and exploring of result provides information for the betterment of agricultural system. Vermicomposting of Sandalwood (Santalum album) leaf litters were studied with an emphasis of physio-chemical deviation during the process and also compared with 100 % cattle dung. Obtained result explore that temperate of 50 % leaf litter (LL) and 100 % cattle dung (CD) was slightly elevated (37ºC ±1 ºC and 35ºC ±1 ºC respectively) at beginning phase and later came down to ambient level (20ºC±1 ºC). The total organic carbon (TOC) exhausted 44 % in 50 % LL Vermicomposting mixture while 70 % in 100 % CD during the process. At the final stage, TOC found more in 50% LL as compared to 100% CD. Nitrogen content was found 1.02±0.1 in 50 % LL and 0.88±0.1 in 100 % CD at the initial phase but after completion of Vermicomposting, their level was increased up to 40 to 44 %.  pH was also measured during vermicomposting and found 7.2±0.1 in 50% LL while 8.4±0.1 in 100% CD at the initial phase. The at the end of process pH raised and set up to 8.2 ±0.1 in 50% LL while in 100% CD it was found 8.0 ±0.1.


Author(s):  
Akira Umehara ◽  
Akira Umehara ◽  
Satoshi Asaoka ◽  
Satoshi Asaoka ◽  
Naoki Fujii ◽  
...  

In enclosed water areas, organic matters are actively produced by phytoplankton due to abundant nutrient supply from the rivers. In our study area of the semi-enclosed Hiroshima Bay, oyster farming consuming high primary production has been developed since the 1950s, and the oyster production of Hiroshima prefecture have had the largest market share (ca. 60%) in Japan. In this study, species composition of phytoplankton, primary production, and secondary production of net zooplanktons and oysters were determined seasonally at seven stations in the bay between November 2014 and August 2015. In the bay, diatoms including Skeletonema costatum dominated during the period of the study. The primary productions markedly increased during summer (August), and its mean values in the northern part of the bay (NB) and the southern part (SB) were 530 and 313 mgC/m2/d, respectively. The productions of net zooplankton and oyster increased during the warm season, and its mean values in the NB were 14 and 1.2 mgC/m2/d, and in SB were 28 and 0.9 mgC/m2/d, respectively. The energy transfer efficiencies from the primary producers to the secondary producers in the NB and SB were 2.8% and 9.1%, respectively. However, the transfer efficiency to the oysters was approximately 0.3% in the bay. This study clearly showed the spatial difference of the productions and transfer efficiencies, and the low contribution of the production of oysters in secondary productions in Hiroshima Bay.


Sign in / Sign up

Export Citation Format

Share Document