Trabecular Surface Remodeling Simulation of Cancellous Bone Using Image-Based Voxel Finite Element Models

Author(s):  
Yoshitaka Kameo ◽  
Ken-ichi Tsubota ◽  
Taiji Adachi
2001 ◽  
Vol 123 (5) ◽  
pp. 403-409 ◽  
Author(s):  
Taiji Adachi ◽  
Ken-ichi Tsubota ◽  
Yoshihiro Tomita ◽  
Scott J. Hollister

A computational simulation method for three-dimensional trabecular surface remodeling was proposed, using voxel finite element models of cancellous bone, and was applied to the experimental data. In the simulation, the trabecular microstructure was modeled based on digital images, and its morphological changes due to surface movement at the trabecular level were directly expressed by removing/adding the voxel elements from/to the trabecular surface. A remodeling simulation at the single trabecular level under uniaxial compressive loading demonstrated smooth morphological changes even though the trabeculae were modeled with discrete voxel elements. Moreover, the trabecular axis rotated toward the loading direction with increasing stiffness, simulating functional adaptation to the applied load. In the remodeling simulation at the trabecular structural level, a cancellous bone cube was modeled using a digital image obtained by microcomputed tomography (μCT), and was uniaxially compressed. As a result, the apparent stiffness against the applied load increased by remodeling, in which the trabeculae reoriented to the loading direction. In addition, changes in the structural indices of the trabecular architecture coincided qualitatively with previously published experimental observations. Through these studies, it was demonstrated that the newly proposed voxel simulation technique enables us to simulate the trabecular surface remodeling and to compare the results obtained using this technique with the in vivo experimental data in the investigation of the adaptive bone remodeling phenomenon.


2015 ◽  
Vol 48 (15) ◽  
pp. 4142-4148 ◽  
Author(s):  
M.G. Goff ◽  
F.M. Lambers ◽  
R.M. Sorna ◽  
T.M. Keaveny ◽  
C.J. Hernandez

2004 ◽  
Vol 30 (2) ◽  
pp. 59-68 ◽  
Author(s):  
Mete I. Fanuscu ◽  
Hung V. Vu ◽  
Bernard Poncelet

Abstract This in vitro study investigated the stress distribution in the bone surrounding an implant that is placed in a posterior edentulous maxilla with a sinus graft. The standard threaded implant and anatomy of the crestal cortical bone, cancellous bone, sinus floor cortical bone, and grafted bone were represented in the 3-dimensional finite element models. The thickness of the crestal cortical bone and stiffness of the graft were varied in the models to simulate different clinical scenarios, representing variation in the anatomy and graft quality. Axial and lateral loads were considered and the stresses developed in the supporting structures were analyzed. The finite element models showed different stress patterns associated with helical threads. The von Mises stress distribution indicated that stress was maximal around the top of the implant with varying intensities in both loading cases. The stress was highest in the cortical bone, lower in the grafted bone, and lowest in the cancellous bone. When the stiffness of the grafted bone approximated the cortical bone, axial loading resulted in stress reduction in all the native bone layers; however, lateral loading produced stress reduction in only the cancellous bone. When the stiffness of the graft was less than that of the cancellous bone, the graft assumed a lesser proportion of axial loads. Thus, it caused a concomitant stress increase in all the native bones, whereas this phenomenon was observed in only the cancellous bone with lateral loading. The crestal cortical bone, though receiving the highest intensity stresses, affected the overall stress distribution less than the grafted bone. The stress from the lateral load was up to 11 times higher than that of the axial load around the implant. These findings suggest that the type of loading affects the load distribution more than the variations in bone, and native bone is the primary supporting structure.


Sign in / Sign up

Export Citation Format

Share Document