Resonant Enhancement of Internal Field as a Function of Mesoscopic System Size: An Unnoticed Source of Large Optical Nonlinearity in Nonlocal Response

Author(s):  
Hajime Ishihara ◽  
Kikuo Cho
2013 ◽  
Vol 319 ◽  
pp. 23-28
Author(s):  
Yi Tao Ren ◽  
Zhen Quan Dai ◽  
Jian Wang ◽  
Jin Yan Duan

Formation of depletion region and the charge distribution are analyzed using multi-charges’ migration under a polling field in fused silica. The internal fields induced are calculated based on a junction model. The field distributions and their intensities within the whole depletion inside the silica are calculated. The maximum field is on the order of 109 V/m in a abrupt junction, and the optical nonlinearities generated by this internal field are consistent with the experimental results published, which proves the junction model is reasonable and feasible to calculate optical nonlinearity in air by thermal polling.


1995 ◽  
Vol 377 ◽  
Author(s):  
Klaus Lips

ABSTRACTElectrically detected magnetic resonance (EDMR) - also often referred to as spin-dependent photoconductivity - is a particularly attractive technique for the investigation of the electronic properties of semiconductor devices. This method detects the paramagnetic states involved in transport and recombination by recording changes of the sample current induced by a resonant enhancement of the recombination rates. This is in contrast to ESR which monitors the resonant enhancement of microwave absorption. Therefore, EDMR is more sensitive by many orders of magnitude than conventional ESR and can be used to investigate a-Si:H solar cell devices under standard operating conditions.In this report we review the EDMR technique and discuss, in detail, the spin-dependent processes controlling dark and photocurrent of standard a-Si:H pin solar cells. In particular, we show that EDMR is sensitive to changes in the internal field of the i layer. We compare the experimental results to numerical calculations of the potential profiles and of EDMR-related quantities. We arrive at the conclusion that degradation by both high forward current and illumination increases the defect density mainly in the i layer, rather than at the pi interface.


2019 ◽  
Vol 100 (6) ◽  
Author(s):  
Annika Tebben ◽  
Clément Hainaut ◽  
Valentin Walther ◽  
Yong-Chang Zhang ◽  
Gerhard Zürn ◽  
...  

1991 ◽  
Vol 58 (7) ◽  
pp. 684-686 ◽  
Author(s):  
I. Sela ◽  
D. E. Watkins ◽  
B. K. Laurich ◽  
D. L. Smith ◽  
S. Subbanna ◽  
...  

Author(s):  
Sergei E. Kuratov ◽  
Dmitry S. Shidlovski ◽  
Sergei I. Blinnikov ◽  
Sergey Yu. Igashov

2019 ◽  
Author(s):  
Brian Nguyen ◽  
Guo P Chen ◽  
Matthew M. Agee ◽  
Asbjörn M. Burow ◽  
Matthew Tang ◽  
...  

Prompted by recent reports of large errors in noncovalent interaction (NI) energies obtained from many-body perturbation theory (MBPT), we compare the performance of second-order Møller–Plesset MBPT (MP2), spin-scaled MP2, dispersion-corrected semilocal density functional approximations (DFA), and the post-Kohn–Sham random phase approximation (RPA) for predicting binding energies of supramolecular complexes contained in the S66, L7, and S30L benchmarks. All binding energies are extrapolated to the basis set limit, corrected for basis set superposition errors, and compared to reference results of the domain-based local pair-natural orbital coupled-cluster (DLPNO-CCSD(T)) or better quality. Our results confirm that MP2 severely overestimates binding energies of large complexes, producing relative errors of over 100% for several benchmark compounds. RPA relative errors consistently range between 5-10%, significantly less than reported previously using smaller basis sets, whereas spin-scaled MP2 methods show limitations similar to MP2, albeit less pronounced, and empirically dispersion-corrected DFAs perform almost as well as RPA. Regression analysis reveals a systematic increase of relative MP2 binding energy errors with the system size at a rate of approximately 1‰ per valence electron, whereas the RPA and dispersion-corrected DFA relative errors are virtually independent of the system size. These observations are corroborated by a comparison of computed rotational constants of organic molecules to gas-phase spectroscopy data contained in the ROT34 benchmark. To analyze these results, an asymptotic adiabatic connection symmetry-adapted perturbation theory (AC-SAPT) is developed which uses monomers at full coupling whose ground-state density is constrained to the ground-state density of the complex. Using the fluctuation–dissipation theorem, we obtain a nonperturbative “screened second-order” expression for the dispersion energy in terms of monomer quantities which is exact for non-overlapping subsystems and free of induction terms; a first-order RPA-like approximation to the Hartree, exchange, and correlation kernel recovers the macroscopic Lifshitz limit. The AC-SAPT expansion of the interaction energy is obtained from Taylor expansion of the coupling strength integrand. Explicit expressions for the convergence radius of the AC-SAPT series are derived within RPA and MBPT and numerically evaluated. Whereas the AC-SAPT expansion is always convergent for nondegenerate monomers when RPA is used, it is found to spuriously diverge for second-order MBPT, except for the smallest and least polarizable monomers. The divergence of the AC-SAPT series within MBPT is numerically confirmed within RPA; prior numerical results on the convergence of the SAPT expansion for MBPT methods are revisited and support this conclusion once sufficiently high orders are included. The cause of the failure of MBPT methods for NIs of large systems is missing or incomplete “electrodynamic” screening of the Coulomb interaction due to induced particle–hole pairs between electrons in different monomers, leaving the effective interaction too strong for AC-SAPT to converge. Hence, MBPT cannot be considered reliable for quantitative predictions of NIs, even in moderately polarizable molecules with a few tens of atoms. The failure to accurately account for electrodynamic polarization makes MBPT qualitatively unsuitable for applications such as NIs of nanostructures, macromolecules, and soft materials; more robust non-perturbative approaches such as RPA or coupled cluster methods should be used instead whenever possible.<br>


2020 ◽  
Author(s):  
Zeyu Liu ◽  
Shugui Hua ◽  
Tian Lu ◽  
Ziqi Tian

Inspired by a previous experimental study on the first-order hyperpolarizabilities of 1,3-thiazolium-5-thiolates mesoionic compounds using Hyper-Rayleigh scattering technique, we theoretically investigated the UV-Vis absorption spectra and every order polarizabilities of these mesoionic molecules. Based on the fact that the photophysical and nonlinear properties observed in the experiment can be perfectly replicated, our theoretical calculations explored the essential characteristics of the optical properties of the mesoionic compounds with different electron-donating groups at the level of electronic structures through various wave function analysis methods. The influence of the electron-donating ability of the donor on the optical properties of the molecules and the contribution of the mesoionic ring moiety to their optical nonlinearity are clarified, which have not been reported by any research so far. This work will help people understand the nature of optical properties of mesoionic-based molecules and provide guidance for the rational design of molecules with excellent photoelectric performance in the future.


2019 ◽  
Author(s):  
Rebecca Lindsey ◽  
Nir Goldman ◽  
Laurence E. Fried ◽  
Sorin Bastea

<p>The interatomic Chebyshev Interaction Model for Efficient Simulation (ChIMES) is based on linear combinations of Chebyshev polynomials describing explicit two- and three-body interactions. Recently, the ChIMES model has been developed and applied to a molten metallic system of a single atom type (carbon), as well as a non-reactive molecular system of two atom types at ambient conditions (water). Here, we continue application of ChIMES to increasingly complex problems through extension to a reactive system. Specifically, we develop a ChIMES model for carbon monoxide under extreme conditions, with built-in transferability to nearby state points. We demonstrate that the resulting model recovers much of the accuracy of DFT while exhibiting a 10<sup>4</sup>increase in efficiency, linear system size scalability and the ability to overcome the significant system size effects exhibited by DFT.</p>


2012 ◽  
Vol 27 (3) ◽  
pp. 327-331
Author(s):  
Qiang LU ◽  
Fang-Ming CUI ◽  
Chen-Yang WEI ◽  
Zi-Le HUA ◽  
Chang-Qing DONG

Sign in / Sign up

Export Citation Format

Share Document