A Peer-to-Peer Single Objective Particle Swarm Optimizer

Author(s):  
Hrishikesh Dewan ◽  
Raksha B. Nayak ◽  
V. Susheela Devi
Author(s):  
Shi Cheng ◽  
Yuhui Shi ◽  
Quande Qin

Premature convergence occurs in swarm intelligence algorithms searching for optima. A swarm intelligence algorithm has two kinds of abilities: exploration of new possibilities and exploitation of old certainties. The exploration ability means that an algorithm can explore more search places to increase the possibility that the algorithm can find good enough solutions. In contrast, the exploitation ability means that an algorithm focuses on the refinement of found promising areas. An algorithm should have a balance between exploration and exploitation, that is, the allocation of computational resources should be optimized to ensure that an algorithm can find good enough solutions effectively. The diversity measures the distribution of individuals' information. From the observation of the distribution and diversity change, the degree of exploration and exploitation can be obtained. Another issue in multiobjective is the solution metric. Pareto domination is utilized to compare two solutions; however, solutions are almost Pareto non-dominated for multiobjective problems with more than ten objectives. In this chapter, the authors analyze the population diversity of a particle swarm optimizer for solving both single objective and multiobjective problems. The population diversity of solutions is used to measure the goodness of a set of solutions. This metric may guide the search in problems with numerous objectives. Adaptive optimization algorithms can be designed through controlling the balance between exploration and exploitation.


2020 ◽  
pp. 147592172097970
Author(s):  
Liangliang Cheng ◽  
Vahid Yaghoubi ◽  
Wim Van Paepegem ◽  
Mathias Kersemans

The Mahalanobis–Taguchi system is considered as a promising and powerful tool for handling binary classification cases. Though, the Mahalanobis–Taguchi system has several restrictions in screening useful features and determining the decision boundary in an optimal manner. In this article, an integrated Mahalanobis classification system is proposed which builds on the concept of Mahalanobis distance and its space. The integrated Mahalanobis classification system integrates the decision boundary searching process, based on particle swarm optimizer, directly into the feature selection phase for constructing the Mahalanobis distance space. This integration (a) avoids the need for user-dependent input parameters and (b) improves the classification performance. For the feature selection phase, both the use of binary particle swarm optimizer and binary gravitational search algorithm is investigated. To deal with possible overfitting problems in case of sparse data sets, k-fold cross-validation is considered. The integrated Mahalanobis classification system procedure is benchmarked with the classical Mahalanobis–Taguchi system as well as the recently proposed two-stage Mahalanobis classification system in terms of classification performance. Results are presented on both an experimental case study of complex-shaped metallic turbine blades with various damage types and a synthetic case study of cylindrical dogbone samples with creep and microstructural damage. The results indicate that the proposed integrated Mahalanobis classification system shows good and robust classification performance.


2021 ◽  
Vol 11 (3) ◽  
pp. 1325
Author(s):  
Dalia Yousri ◽  
Magdy B. Eteiba ◽  
Ahmed F. Zobaa ◽  
Dalia Allam

In this paper, novel variants for the Ensemble Particle Swarm Optimizer (EPSO) are proposed where ten chaos maps are merged to enhance the EPSO’s performance by adaptively tuning its main parameters. The proposed Chaotic Ensemble Particle Swarm Optimizer variants (C.EPSO) are examined with complex nonlinear systems concerning equal order and variable-order fractional models of Permanent Magnet Synchronous Motor (PMSM). The proposed variants’ results are compared to that of its original version to recommend the most suitable variant for this non-linear optimization problem. A comparison between the introduced variants and the previously published algorithms proves the developed technique’s efficiency for further validation. The results emerge that the Chaotic Ensemble Particle Swarm variants with the Gauss/mouse map is the most proper variant for estimating the parameters of equal order and variable-order fractional PMSM models, as it achieves better accuracy, higher consistency, and faster convergence speed, it may lead to controlling the motor’s unwanted chaotic performance and protect it from ravage.


Sign in / Sign up

Export Citation Format

Share Document