Mild Solutions for Impulsive Functional Differential Equations of Order $$\alpha \in (1,2)$$

Author(s):  
Ganga Ram Gautam ◽  
Jaydev Dabas
Filomat ◽  
2017 ◽  
Vol 31 (2) ◽  
pp. 451-460 ◽  
Author(s):  
Mohammed Belmekki ◽  
Kheira Mekhalfi

This paper is devoted to study the existence of mild solutions for semilinear functional differential equations with state-dependent delay involving the Riemann-Liouville fractional derivative in a Banach space and resolvent operator. The arguments are based upon M?nch?s fixed point theoremand the technique of measure of noncompactness.


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
T. E. Govindan

This paper studies the existence and uniqueness of a mild solution for a neutral stochastic partial functional differential equation using a local Lipschitz condition. When the neutral term is zero and even in the deterministic special case, the result obtained here appears to be new. An example is included to illustrate the theory.


2009 ◽  
Vol 2009 ◽  
pp. 1-11 ◽  
Author(s):  
Meili Li ◽  
Chunhai Kou

The existence of mild solutions for second-order impulsive semilinear neutral functional differential equations with nonlocal conditions in Banach spaces is investigated. The results are obtained by using fractional power of operators and Sadovskii's fixed point theorem.


2003 ◽  
Vol 2003 (26) ◽  
pp. 1645-1661 ◽  
Author(s):  
Hernán R. Henríquez

We establish existence of mild solutions for a class of semilinear first-order abstract retarded functional differential equations (ARFDEs) with infinite delay and we prove that the set consisting of mild solutions for this problem is connected in the space of continuous functions.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Badawi Hamza Elbadawi Ibrahim ◽  
Zhenbin Fan ◽  
Gang Li

We discuss the functional control systems governed by differential equations with Riemann-Liouville fractional derivative in general Banach spaces in the present paper. First we derive the uniqueness and existence of mild solutions for functional differential equations by the approach of fixed point and fractional resolvent under more general settings. Then we present new sufficient conditions for approximate controllability of functional control system by means of the iterative and approximate method. Our results unify and generalize some previous works on this topic.


Sign in / Sign up

Export Citation Format

Share Document