A Novel Approach for Balancing the Loads on Virtual Machines for Scheduling Parallel Jobs Based on Priority-Based Consolidation Method

Author(s):  
P. Mohamed Shameem ◽  
R. S. Shaji ◽  
Jyothi Vijayan
Author(s):  
Susmita J. A. Nair ◽  
T. R. Gopalakrishnan Nair

In virtualized servers, with live migration technique pages are copied from one physical machine to another while the virtual machine (VM) is running. The dynamic migration of virtual machines encumbers the data center which in turn reduces the performance of applications running on that particular physical machine. A considerable number of studies have been carried out in the area of performance evaluation during live VM migration.  However, all the aspects related to the migration process have not been examined for the performance assessment. In this paper, we propose a novel approach to evaluate the performance during migration process in different types of coupled machine environment. It is presented here that the state of art VM migration technology requires further improvement in realizing effective migration by monitoring comprehensive performance value. We introduced the parameter, θ, to compare performance value which can be used for controlling and halting unsuccessful migration and save significant amount of time in migration operation.  Our model is capable of analyzing real time scenario of cloud performance assessment targeting VM migration strategies. It also offers the possibility of further expanding to universal models for analyzing the performance variations that occurs as a result of VM migration.


2016 ◽  
Vol 15 (14) ◽  
pp. 7435-7443 ◽  
Author(s):  
Sheenam Kamboj ◽  
Mr. Navtej Singh Ghumman

Cloud computing is distributed computing, storing, sharing and accessing data over the Internet. It provides a pool of shared resources to the users available on the basis of pay as you go service that means users pay only for those services which are used by him according to their access times. Load balancing ensures that no single node will be overloaded and used to distribute workload among multiple nodes. It helps to improve system performance and proper utilization of resources. We propose an improved load balancing algorithm for job scheduling in the cloud environment using K-Means clustering of cloudlets and virtual machines in the cloud environment. All the cloudlets given by the user are divided into 3 clusters depending upon client’s priority, cost and instruction length of the cloudlet. The virtual machines inside the datacenter hosts are also grouped into multiple clusters depending upon virtual machine capacity in terms of processor, memory, and bandwidth. Sorting is applied at both the ends to reduce the latency. Multiple number of experiments have been conducted by taking different configurations of cloudlets and virtual machine. Various parameters like waiting time, execution time, turnaround time and the usage cost have been computed inside the cloudsim environment to demonstrate the results. Compared with the other job scheduling algorithms, the improved load balancing algorithm can outperform them according to the experimental results. 


Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3108
Author(s):  
Bence Ligetfalvi ◽  
Márk Emődi ◽  
József Kovács ◽  
Róbert Lovas

In Infrastructure-as-a-Service (IaaS) clouds, the development process of a ready-to-use and reliable infrastructure might be a complex task due to the interconnected and dependent services that are deployed (and operated later on) in a concurrent way on virtual machines. Different timing conditions may change the overall initialisation method, which can lead to abnormal behaviour or failure in the non-deterministic environment. The overall motivation of our research is to improve the reliability of cloud-based infrastructures with minimal user interactions and significantly accelerate the time-consuming debugging process. This paper focuses on the behaviour of cloud-based infrastructures during their deployment phase and introduces the adaption of a replay, and active control enriched debugging technique, called macrostep, in the field of cloud orchestration in order to provide support for developers troubleshooting deployment-related errors. The fundamental macrostep mechanisms, including the generation of collective breakpoint sets as well as the traversal method for such consistent global states, have been combined with the Occopus cloud orchestrator and the Neo4J graph database. The paper describes the novel approach, the design choices as well as the implementation of the experimental debugger tool with a use case for validation purposes by providing some preliminary numerical results.


2019 ◽  
Vol 11 (5) ◽  
pp. 109 ◽  
Author(s):  
Amer Al-Rahayfeh ◽  
Saleh Atiewi ◽  
Abdullah Abuhussein ◽  
Muder Almiani

Cloud computing (CC) is fast-growing and frequently adopted in information technology (IT) environments due to the benefits it offers. Task scheduling and load balancing are amongst the hot topics in the realm of CC. To overcome the shortcomings of the existing task scheduling and load balancing approaches, we propose a novel approach that uses dominant sequence clustering (DSC) for task scheduling and a weighted least connection (WLC) algorithm for load balancing. First, users’ tasks are clustered using the DSC algorithm, which represents user tasks as graph of one or more clusters. After task clustering, each task is ranked using Modified Heterogeneous Earliest Finish Time (MHEFT) algorithm. where the highest priority task is scheduled first. Afterwards, virtual machines (VM) are clustered using a mean shift clustering (MSC) algorithm using kernel functions. Load balancing is subsequently performed using a WLC algorithm, which distributes the load based on server weight and capacity as well as client connectivity to server. A highly weighted or least connected server is selected for task allocation, which in turn increases the response time. Finally, we evaluate the proposed architecture using metrics such as response time, makespan, resource utilization, and service reliability.


2017 ◽  
Vol 16 (7) ◽  
pp. 6994-7001
Author(s):  
Sukhbhinder Kaur ◽  
Mr. Navtej Singh Ghumman

Cloud Computing is a technology that provides a platform for sharing of resources such as software, infrastructure, application and other information. Cloud Computing is being used widely all over the world, as it provides benefits to the users like cost saving and ease of use. The research work focuses on the study of task scheduling mechanism in cloud. The main goal is to reduce the power consumption by datacenters. Energy efficient scheduling of workload help to reduce the consumption of energy in datacenters thus helps in better usage of resources. An improved power saving algorithm is proposed by combining the task classification along with VM skewness algorithm with different scaling options. Skewness is used to quantify the unevenness in utilization of multiple resources on the server. Our purposed algorithm calculate the skewness factor of all Virtual Machines and based upon its value. The proposed approach is performing and shows a decrease in response time, waiting time, processing cost and overall electrical power consumed. The study can be further extended by applying the proposed algorithm on actual Cloud Computing environment and we can also integrate various energy saving technologies into data centers to reduce energy consumption.


2019 ◽  
Vol 476 (24) ◽  
pp. 3705-3719 ◽  
Author(s):  
Avani Vyas ◽  
Umamaheswar Duvvuri ◽  
Kirill Kiselyov

Platinum-containing drugs such as cisplatin and carboplatin are routinely used for the treatment of many solid tumors including squamous cell carcinoma of the head and neck (SCCHN). However, SCCHN resistance to platinum compounds is well documented. The resistance to platinum has been linked to the activity of divalent transporter ATP7B, which pumps platinum from the cytoplasm into lysosomes, decreasing its concentration in the cytoplasm. Several cancer models show increased expression of ATP7B; however, the reason for such an increase is not known. Here we show a strong positive correlation between mRNA levels of TMEM16A and ATP7B in human SCCHN tumors. TMEM16A overexpression and depletion in SCCHN cell lines caused parallel changes in the ATP7B mRNA levels. The ATP7B increase in TMEM16A-overexpressing cells was reversed by suppression of NADPH oxidase 2 (NOX2), by the antioxidant N-Acetyl-Cysteine (NAC) and by copper chelation using cuprizone and bathocuproine sulphonate (BCS). Pretreatment with either chelator significantly increased cisplatin's sensitivity, particularly in the context of TMEM16A overexpression. We propose that increased oxidative stress in TMEM16A-overexpressing cells liberates the chelated copper in the cytoplasm, leading to the transcriptional activation of ATP7B expression. This, in turn, decreases the efficacy of platinum compounds by promoting their vesicular sequestration. We think that such a new explanation of the mechanism of SCCHN tumors’ platinum resistance identifies novel approach to treating these tumors.


2020 ◽  
Vol 51 (3) ◽  
pp. 544-560 ◽  
Author(s):  
Kimberly A. Murphy ◽  
Emily A. Diehm

Purpose Morphological interventions promote gains in morphological knowledge and in other oral and written language skills (e.g., phonological awareness, vocabulary, reading, and spelling), yet we have a limited understanding of critical intervention features. In this clinical focus article, we describe a relatively novel approach to teaching morphology that considers its role as the key organizing principle of English orthography. We also present a clinical example of such an intervention delivered during a summer camp at a university speech and hearing clinic. Method Graduate speech-language pathology students provided a 6-week morphology-focused orthographic intervention to children in first through fourth grade ( n = 10) who demonstrated word-level reading and spelling difficulties. The intervention focused children's attention on morphological families, teaching how morphology is interrelated with phonology and etymology in English orthography. Results Comparing pre- and posttest scores, children demonstrated improvement in reading and/or spelling abilities, with the largest gains observed in spelling affixes within polymorphemic words. Children and their caregivers reacted positively to the intervention. Therefore, data from the camp offer preliminary support for teaching morphology within the context of written words, and the intervention appears to be a feasible approach for simultaneously increasing morphological knowledge, reading, and spelling. Conclusion Children with word-level reading and spelling difficulties may benefit from a morphology-focused orthographic intervention, such as the one described here. Research on the approach is warranted, and clinicians are encouraged to explore its possible effectiveness in their practice. Supplemental Material https://doi.org/10.23641/asha.12290687


2015 ◽  
Vol 21 ◽  
pp. 128
Author(s):  
Kaniksha Desai ◽  
Halis Akturk ◽  
Ana Maria Chindris ◽  
Shon Meek ◽  
Robert Smallridge ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document