The Impact of Land Use Change on Water Yield: The Case Study of Three Selected Urbanised and Newly Urbanised Catchments in Peninsular Malaysia

Author(s):  
Mohd Suhaily Yusri Che Ngah ◽  
Ian Reid
2018 ◽  
Vol 156 (2) ◽  
pp. 151-161
Author(s):  
Fei Li ◽  
Shuwen Zhang ◽  
Yijing Zhang ◽  
Haijuan Yang ◽  
Jiuchun Yang

AbstractGrain production potential is mainly influenced by agroclimate and land use. In the present study, substantial regional differences associated with the impact of climate change were found (i.e. the degree of climate-related impacts varied among regions). Currently, there is an urgent need for effective responses and adaptations to different agricultural districts and agricultural production modes. Therefore, the aim was to examine ecotones and explore trends and influential factors associated with grain production potential change. Using the Global Agro-ecological Zone model, the grain production potential of West Jilin, China under different conditions during various years were estimated, considering meteorological, soil, topographic, land use and other data. The results showed that total grain production potential (TGrPP) of West Jilin increased continuously from 1976 to 2013. The average annual increase in TGrPP was higher in period 1 (1976–2000) than period 2 (2000–2013). In period 1, grain production potential was influenced mainly by irrigation percentage changes, followed by land use change. The conversion of grassland to farmland was the most important land use change factor that was associated with increased grain production potential. Climate change affected grain production potential in period 1 negatively. In period 2, climate change had the largest impact and land use imparted the smallest effect on grain production potential. Finally, the decrease in irrigation percentage resulted in reduced grain production potential.


2020 ◽  
Author(s):  
Bence Decsi ◽  
Zsolt Kozma

<p>As a result of climate change, improving the efficiency of our water management has become a key social goal in recent decades. In many regions, water management problems are becoming more common as the result of hydrologic extremes, such as water scarcity, drought or floods.</p><p>Countries and regions dealing with water problems, like some parts of Hungary, could avoid major damage by land use change. The possibility of land use change is obviously not an option in certain instances, especially in populated areas or areas with major infrastructure (roads, railways, airports, factories, etc.). At the same time, non-populated areas (primarily agricultural land) may be transformed in the future, in the hope of better water management.</p><p>Complex, multi-dimensional assessment of ecosystem services can be a step forward in the evaluation and planning of future land use changes with the aim of improving water resources management. The strength of this approach is multi-disciplinarity, which requires the collaboration of representatives of the technical, economic, social and ecological sciences.</p><p>In our study, we quantified and mapped the most important water resources related indicators and services of the Zala River basin in Western Hungary. Zala River is the largest sub-catchment of Lake Balaton, Central-Europe’s largest standing water. The lake has great economic and social importance in Hungary, primarily due to its recreational and cultural services, so it is necessary to have sufficient quantity and quality of water.  The catchment area is 1521 km<sup>2</sup>, land use conditions are dominated by agricultural and forest areas (around 57% and 37% respectively).</p><p>For the quantification of ecosystem services indicators, we used the GIS based, static model package InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs). InVEST is suggested to describe the socio-ecological state of several services, under various periods or land use conditions. The strength of the model lies in its solid data requirements and low computational demand. In our work, we mapped the following services and indicators: annual water yield, seasonal water yield, quickflow, nutrient retention, sediment retention and agricultural crop yields.</p><p>We examined the impact of different interventions on the ecosystem services. We intervened primarily in areas where agricultural land use is not justified due to different environmental conditions. In these areas, we analyzed the introduction of natural surfaces with afforestation and meadows. We built up a reference (based on a novel LULC map representing actual conditions) and some fictive model variants. These model variants differed in the amount and location of the new semi-natural areas. The variants were compared for two temporal periods: 1980-2010 and 2020-2050 (based on climate models).</p><p>We quantified the tradeoffs as a result of a given land use change. As expected, the future negative effects of climate change could be mitigated by increasing semi-natural areas. All ecosystem services would improve except for crop yields. At the same time, however, farmers would be deprived of significant yields in areas, which are excluded from agriculture. Our research highlights that the positive effects or tradeoffs due to land-use change will be needed in the future.</p>


2015 ◽  
Vol 35 (14) ◽  
Author(s):  
吴未 WU Wei ◽  
张敏 ZHANG Min ◽  
许丽萍 XU Liping ◽  
欧名豪 OU Minghao

2021 ◽  
Vol 13 (2) ◽  
pp. 716
Author(s):  
Mengzhu Liu ◽  
Leilei Min ◽  
Jingjing Zhao ◽  
Yanjun Shen ◽  
Hongwei Pei ◽  
...  

Land use change is an important scientific issue recognized for its potential to alter ecosystem services (ESs), especially water-related ecosystem services (WRESs). Using the integrated valuation of ecosystem services and trade-offs (InVEST) model, this study quantified and mapped spatiotemporal variations in land use and corresponding WRESs in the Bashang area of Hebei Province, China (BAHP) to investigate how land use change impacted WRESs by means of scenario analysis, especially, in which a new evaluation indicator, average ecology effect (AEE) was proposed and well applied. The results indicated that woodland expansion (+602.61 km2) and grassland shrinkage (−500.57 km2) dominated the land use change in the BAHP in 2000–2018, which altered local WRESs, including the moderate declines in water purification and water yield, as well as a significant enhancement in soil conservation. In scenario analysis, compared to baseline levels, riparian woodland buffer and planting trees scenarios slightly decreased water yield but strengthened water purification and soil conservation; reclaiming wasteland and integrated development scenarios significantly enhanced soil conservation but lowered water yield and water purification; fertilizer reduction scenario effectively mitigated water deterioration. According to AEE, the riparian woodland buffer (RWB) scenario performed greater than the planting trees (PT) scenario on variations of WRESs per unit area, which differed completely from the results based on total variations. Overall, a multiple-scale indicator for a comprehensive evaluation of ESs should receive more attention.


2012 ◽  
Vol 17 (2) ◽  
pp. 174-179 ◽  
Author(s):  
Chuanyan ZHOU ◽  
Xun CHEN ◽  
Xiaoling LIU ◽  
Weiquan ZHAO ◽  
Kun LI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document