Effect of Isotropic Free-stream Turbulence in Favorable Pressure Gradient Turbulent Boundary Layers over a Rough Surface

Author(s):  
Sheilla Torres-Nieves ◽  
José R. Lebrón ◽  
Hyung Suk Kang ◽  
Brian Brzek ◽  
Raúl B. Cal ◽  
...  
Author(s):  
Ken-ichi Funazaki ◽  
Takashi Kitazawa ◽  
Kazuyuki Koizumi ◽  
Tadashi Tanuma

The objective of this study is to investigate effects of favorable pressure gradient as well as free-stream turbulence upon wake-induced boundary layer transition on a flat plate. Likewise in the previous study by Funazaki (1996), a spoked-wheel type wake generator is employed in this study. Two identical flat plates with sharp edge are used as test model. One of them is for measurement of boundary layers over the test plate by use of a single hot-wire probe, and the other is provided with thin stainless-steel foils on the surface to measure wake-affected heat transfer along the surface. Free-stream turbulence intensities are controlled with several types of turbulence grids. Pressure gradients over the test surface are adjusted by changing an inclination angle of the plate located opposite to the test model. In Part I, transition models proposed by Mayle and Dullenkopf (1990b) and Funazaki (1996a, 1996b) are compared with the experimental data obtained in this study to examine how such a model succeeds or fails in predicting the wake-induced boundary layer transition under the influences of favorable pressure gradient with a low free-stream turbulence.


1993 ◽  
Vol 115 (1) ◽  
pp. 56-63 ◽  
Author(s):  
N. Shima

The purpose of this two-part paper is to assess the performance of a second-moment closure applicable up to a wall. In the present part, the turbulence model is applied to the boundary layers with periodic pressure gradient, with wall transpiration and with free-stream turbulence. The predictions are shown to be in good agreement with experiments and a direct simulation. In particular, a tendency towards relaminarization and a subsequent retransition in the oscillating boundary layer are faithfully reproduced, and the effect of the length scale of free-stream turbulence is correctly captured.


1984 ◽  
Vol 106 (2) ◽  
pp. 268-275 ◽  
Author(s):  
D. C. McCormick ◽  
F. L. Test ◽  
R. C. Lessmann

This paper discussses the effect of free-stream turbulence on the constant temperature heat transfer rate from the surface of a two-dimensional rectangular body that is subject to a strongly favorable pressure gradient. Free-stream turbulence levels of 2 to 5 percent enhanced the heat transfer by 48 to 55 percent over predicted laminar values. Free-stream turbulence levels of 10 to 35 percent produced heat transfer results that behaved in some aspects as turbulent predictions, although considerably enhanced in magnitude over the predicted values.


Author(s):  
Ken-ichi Funazaki ◽  
Takashi Kitazawa ◽  
Kazuyuki Koizumi ◽  
Tadashi Tanuma

This paper, as Part II of the study on wake-disturbed boundary layer, is aimed at investigation of the effects of free-stream turbulence on wake-induced transition of the boundary layer under a favorable pressure gradient. Hot-wire probe measurements are also made on the wake-disturbed boundary layer to obtain ensemble-averaged shape factor contours on the distance-time diagrams. These data are then used to examine how the favorable pressure gradient and the free-stream turbulence affects time-resolved behaviors of the boundary layer subjected to periodic wakes. In addition, likewise in Part I, the heat transfer data are compared with the transition model proposed by Funazaki (1996) in order to check the capability of the model under the favorable pressure gradient as well as the free-stream turbulence.


2005 ◽  
Author(s):  
Rau´l Bayoa´n Cal ◽  
Xia Wang ◽  
Luciano Castillo

Applying similarity analysis to the RANS equations of motion for a pressure gradient turbulent boundary layer, Castillo and George [1] obtained the scalings for the mean deficit velocity and the Reynolds stresses. Following this analysis, Castillo and George studied favorable pressure gradient (FPG) turbulent boundary layers. They were able to obtain a single curve for FPG flows when scaling the mean deficit velocity profiles. In this study, FPG turbulent boundary layers are analyzed as well as relaminarized boundary layers subjected to an even stronger FPG. It is found that the mean deficit velocity profiles diminish when scaled using the Castillo and George [1] scaling, U∞, and the Zagarola and Smits [2] scaling, U∞δ*/δ. In addition, Reynolds stress data has been analyzed and it is found that the relaminarized boundary layer data decreases drastically in all components of the Reynolds stresses. Furthermore, it will be shown that the shape of the profile for the wall-normal and Reynolds shear stress components change drastically given the relaminarized state. Therefore, the mean velocity deficit profiles as well as Reynolds stresses are found to be necessary in order to understand not only FPG flows, but also relaminarized boundary layers.


Sign in / Sign up

Export Citation Format

Share Document