The Effect of Free-Stream Turbulence on Heat Transfer From a Rectangular Prism

1984 ◽  
Vol 106 (2) ◽  
pp. 268-275 ◽  
Author(s):  
D. C. McCormick ◽  
F. L. Test ◽  
R. C. Lessmann

This paper discussses the effect of free-stream turbulence on the constant temperature heat transfer rate from the surface of a two-dimensional rectangular body that is subject to a strongly favorable pressure gradient. Free-stream turbulence levels of 2 to 5 percent enhanced the heat transfer by 48 to 55 percent over predicted laminar values. Free-stream turbulence levels of 10 to 35 percent produced heat transfer results that behaved in some aspects as turbulent predictions, although considerably enhanced in magnitude over the predicted values.

1967 ◽  
Vol 89 (2) ◽  
pp. 169-175 ◽  
Author(s):  
G. H. Junkhan ◽  
G. K. Serovy

Experimental data indicating some effects of free-stream turbulence intensity on time-average boundary-layer velocity profiles and on heat transfer from a constant-temperature flat plate with a favorable pressure gradient are presented for local Reynolds numbers ranging from 4 × 104 to 4 × 105 and for free-stream turbulence intensities from 0.4 to 8.3 percent. It is concluded that, for the range of variables covered by the experiments: (a) The effect of free-stream turbulence intensity on heat transfer through the laminar boundary layer with a zero pressure gradient is negligible; (b) for a given Reynolds number, the local Nusselt number increases with increasing free-stream turbulence intensity when a pressure gradient is present, the boundary-layer profiles for these conditions changing with a variation in free-stream turbulence intensity; and (c) no increase in Nusselt number with increase in free-stream turbulence intensity occurs for turbulent boundary layers with a favorable pressure gradient.


1998 ◽  
Vol 120 (2) ◽  
pp. 337-342 ◽  
Author(s):  
D. G. Bogard ◽  
D. L. Schmidt ◽  
M. Tabbita

The physical characteristics of surface roughness observed on first-stage high-pressure turbine vanes that had been in service for a long period were investigated in this study. Profilometry measurements were utilized to provide details of the surface roughness formed by deposits of foreign materials on different parts of the turbine vane. Typical measures of surface roughness such as centerline average roughness values were shown to be inadequate for characterizing roughness effects. Using a roughness shape parameter originally derived from regular roughness arrays, the turbine airfoil roughness was characterized in terms of equivalent sand-grain roughness in order to develop an appropriate simulation of the surface for laboratory experiments. Two rough surface test plates were designed and fabricated. These test plates were evaluated experimentally to quantify the heat transfer rate for flow conditions similar to that which occurs on the turbine airfoil. Although the roughness levels on the two test plates were different by a factor of two, both surfaces caused similar 50 percent increases in heat transfer rates relative to a smooth surface. The effects of high free-stream turbulence, with turbulence levels from 10 to 17 percent, were also investigated. Combined free-stream turbulence and surface roughness effects were found to be additive, resulting in as much as a 100 percent increase in heat transfer rate.


2011 ◽  
Vol 2011.60 (0) ◽  
pp. _871-1_-_871-2_
Author(s):  
Kohei TAKANO ◽  
Tomoya HOURA ◽  
Masato TAGAWA ◽  
Yasutaka NAGANO

Author(s):  
Ken-ichi Funazaki ◽  
Takashi Kitazawa ◽  
Kazuyuki Koizumi ◽  
Tadashi Tanuma

This paper, as Part II of the study on wake-disturbed boundary layer, is aimed at investigation of the effects of free-stream turbulence on wake-induced transition of the boundary layer under a favorable pressure gradient. Hot-wire probe measurements are also made on the wake-disturbed boundary layer to obtain ensemble-averaged shape factor contours on the distance-time diagrams. These data are then used to examine how the favorable pressure gradient and the free-stream turbulence affects time-resolved behaviors of the boundary layer subjected to periodic wakes. In addition, likewise in Part I, the heat transfer data are compared with the transition model proposed by Funazaki (1996) in order to check the capability of the model under the favorable pressure gradient as well as the free-stream turbulence.


Sign in / Sign up

Export Citation Format

Share Document