Confinement and Tension Stiffening Effects in High Performance Self-consolidated Hybrid Fiber Reinforced Concrete Composites

Author(s):  
W. Trono ◽  
G. Jen ◽  
D. Moreno ◽  
S. Billington ◽  
C. P. Ostertag

Concrete is hard but liable to break easily. Hybrid fiber reinforced concrete offers several economical and technical benefits. The use of fibers extends its possibilities. The hybridization of different types of fibers may play important roles in arresting cracks and thus achieve high performance of concrete. The main reason for adding glass ,steel and polypropylene to improve the ductility of concrete.The present research work is aimed at studying, the deep beam using three different types of fibers such as glass 0.3%, steel 0.75% & 1% and polypropylene fibers 0.3% were added to volume of concrete. The mix design has been arrived based on IS code method for M20 grade of concrete. An investigation is carried out to evaluate the fresh Properties and mechanical Properties of Hybrid Fiber Reinforced Concrete (HFRC). The result shows that hybrid fiber reinforced deep beams achieved better performance than the ordinary RC deep beam under application of load.


2014 ◽  
Vol 629-630 ◽  
pp. 299-305 ◽  
Author(s):  
Rotana Hay ◽  
Claudia Ostertag

The synergy of hybrid fibers allows for an enhanced concrete composite performance at a lower fiber volume fraction as compared to other types of fiber-reinforced concrete. This paper outlines the development process and properties of a new concrete composite termed high-performance green hybrid fiber-reinforced concrete (HP-G-HyFRC). Steel and polyvinyl alcohol (PVA) fibers were used as discontinuous reinforcement of the composite. Up to 60% of cement by mass was replaced by industrial wastes comprising slag and fly ash. At water-binder ratio of 0.25 and with the presence of coarse aggregates, careful proportioning of the mix constituents allows for a composite that is highly flowable. At a combined fiber volume fraction of only 1.65%, the composite also exhibits a deflection hardening behavior which is known to be beneficial for both serviceability and durability of structures. The composite was proposed to be used in an innovative double skin façade (DSF) system consisting of 30 mm air gap in between two thin HP-G-HyFRC skins with no main reinforcing rebars. It was shown that the DSF system alone allows for about 7.6% reduction of cooling energy in buildings.


Sign in / Sign up

Export Citation Format

Share Document