Globular Cluster Dynamical Evolution

Author(s):  
Melvyn B. DaviesProf.
1996 ◽  
Vol 174 ◽  
pp. 375-376
Author(s):  
P.-Y. Longaretti ◽  
C. Lagoute

We have computed simplified globular cluster evolutionary tracks which take into account the effects of internal relaxation, of the cluster rotation, of the galactic tidal field, and, in a cruder way, of stellar evolution and of gravitational shocking. The objectives are first to quantify the influence of rotation in the dynamical evolution of globular clusters; and second, to investigate the evolution of globular cluster angular momentum and flattening (Lagoute and Longaretti 1995a, Longaretti and Lagoute 1995b,c).


2019 ◽  
Vol 14 (S351) ◽  
pp. 442-446
Author(s):  
Alessandra Mastrobuono-Battisti ◽  
Sergey Khoperskov ◽  
Paola Di Matteo ◽  
Misha Haywood

AbstractThe Galactic globular cluster system went and is still going through dynamical processes that require to be explored in detail. Here we illustrate how primordial massive globular clusters born in the Milky Way’s disc evolved by stripping material from each other or even merging very early during their lives. These processes might explain the puzzling presence of star-by-star spreads in iron content observed in massive globular clusters and should be taken into account when studying globular cluster stellar populations. In this context, we show how the direct comparison between the predictions provided by our direct N-body simulations and observations can shed light on the origin and chemo-dynamical evolution of globular clusters.


2007 ◽  
Vol 3 (S246) ◽  
pp. 394-402
Author(s):  
Stephen E. Zepf

AbstractThis paper reviews some of the observational properties of globular cluster systems, with a particular focus on those that constrain and inform models of the formation and dynamical evolution of globular cluster systems. I first discuss the observational determination of the globular cluster luminosity and mass function. I show results from new very deep HST data on the M87 globular cluster system, and discuss how these constrain models of evaporation and the dynamical evolution of globular clusters. The second subject of this review is the question of how to account for the observed constancy of the globular cluster mass function with distance from the center of the host galaxy. The problem is that a radial trend is expected for isotropic cluster orbits, and while the orbits are observed to be roughly isotropic, no radial trend in the globular cluster system is observed. I review three extant proposals to account for this, and discuss observations and calculations that might determine which of these is most correct. The final subject is the origin of the very weak mass-radius relation observed for globular clusters. I discuss how this strongly constrains how globular clusters form and evolve. I also note that the only viable current proposal to account for the observed weak mass-radius relation naturally effects the globular cluster mass function, and that these two problems may be closely related.


2019 ◽  
Vol 489 (3) ◽  
pp. 4311-4321 ◽  
Author(s):  
Maxwell X Cai ◽  
S Portegies Zwart ◽  
M B N Kouwenhoven ◽  
Rainer Spurzem

ABSTRACT As of 2019 August, among the more than 4000 confirmed exoplanets, only one has been detected in a globular cluster (GC) M4. The scarce of exoplanet detections motivates us to employ direct N-body simulations to investigate the dynamical stability of planets in young massive clusters (YMC), which are potentially the progenitors of GCs. In an N = 128 k cluster of virial radius 1.7 pc (comparable to Westerlund-1), our simulations show that most wide-orbit planets (a ≥ 20 au) will be ejected within a time-scale of 10 Myr. Interestingly, more than $70{{\ \rm per\ cent}}$ of planets with a < 5 au survive in the 100 Myr simulations. Ignoring planet–planet scattering and tidal damping, the survivability at t Myr as a function of initial semimajor axis a0 in au in such a YMC can be described as fsurv(a0, t) = −0.33log10(a0)(1 − e−0.0482t) + 1. Upon ejection, about $28.8{{\ \rm per\ cent}}$ of free-floating planets (FFPs) have sufficient speeds to escape from the host cluster at a crossing time-scale. The other FFPs will remain bound to the cluster potential, but the subsequent dynamical evolution of the stellar system can result in the delayed ejection of FFPs from the host cluster. Although a full investigation of planet population in GCs requires extending the simulations to multiGyr, our results suggest that wide-orbit planets and free-floating planets are unlikely to be found in GCs.


1988 ◽  
Vol 126 ◽  
pp. 585-586
Author(s):  
Michael M. Shara ◽  
Michael Potter ◽  
Anthony F. J. Moffat ◽  
Helen Sawyer Hogg ◽  
Amelia Wehlau

Although close binaries are believed to be of importance in the dynamical evolution of globular clusters, searches for such binaries have produced mostly negative results, aside from x-ray sources. Two dwarf novae which are possible cluster members are known (Margon and Downes 1983) and two classical nova candidates have been found. The crowded field around the nova observed in 1860 close to the center of M80 makes ground-based recovery of that star impossible with present techniques. Here we report on our attempt to recover the star which erupted in 1938 about 30″ (0.8 core radii) from the center of M14.


1995 ◽  
Vol 164 ◽  
pp. 372-372
Author(s):  
J. Anosova ◽  
L. Kiseleva

Stars show a marked tendency to form the systems of different multiplicity starting from the smallest systems as binary and triple stars up to clusters with a significantly larger number of objects (N ~ 107 for globular cluster s). Different investigators have used different methods of binary stars identificati on but modern observations give a frequency of binary and multiple stars in the Galactic field up to 70% Binary and multiple stars are also often present within star clusters. It is therefore very important to be able to identify such systems as rather isolated substructures in which the dynamical evolution is not significantly affected by other stars (at least, during some considerab le time interval).


2007 ◽  
Vol 3 (S246) ◽  
pp. 263-264
Author(s):  
D. Saul Davis ◽  
Harvey B. Richer ◽  
Jay Anderson ◽  
James Brewer

AbstractThe binary fraction, η, of a globular cluster (GC) is a key parameter in determining its dynamical evolution, as well as its content of rare stars, such as cataclysmic variables and blue stragglers. The precise value of η for a GC was historically difficult to constrain due to an inability to obtain reliable photometry for faint objects in dense stellar fields. However, today, the HST allows us to image the main sequence of the nearest GCs to their terminations. Using HST observations we constrain η for NGC 6397. While the necessary computing power is now available to realistically simulate entire GCs, large discrepancies in the assumed primordial binary fraction, ηp, of GCs still exist. Estimates range from 5% (Hurley et al. 2007) to 100% (Ivanova et al. 2005). The N-body models of Hurley et al. (2007) suggest that η beyond the half-mass radius remains close to ηp, while cluster evolution can increase the value in the core. We find η for NGC 6397 is 15.2±0.8% in a field centered on the core, and 1.1±0.3% in a field beyond the half mass radius. These findings suggests ηp ~ 1%.


2017 ◽  
Vol 26 (09) ◽  
pp. 1730017
Author(s):  
Marco Merafina

We analyze structural parameters of the globular clusters belonging to the Milky Way system which were listed in the latest edition of the Harris Catalogue. We search for observational evidences of the effect of tidal forces induced by the Galaxy on the dynamical and thermodynamical evolution of a globular cluster. The behavior for the [Formula: see text] distribution exhibited by the globular cluster population seems to be in contrast with theoretical results in literature about gravothermal instability, and suggest a new limit value smaller than the previous one.


Sign in / Sign up

Export Citation Format

Share Document