classical nova
Recently Published Documents


TOTAL DOCUMENTS

202
(FIVE YEARS 27)

H-INDEX

24
(FIVE YEARS 3)

2022 ◽  
Vol 924 (1) ◽  
pp. L17
Author(s):  
Kwan-Lok Li

Abstract I report here a new result extracted from the Fermi Large Area Telescope observation of the classical nova ASASSN-16ma that exhibits coherent γ-ray pulsations at 544.84(7) s during its outburst in 2016. Considering the number of independent trials, the significance of the evidence is 4.0σ, equivalent to a false-alarm probability of 5.9 × 10−5. The periodicity was steady during the 4 days of its appearance, indicating its origin as the spinning signal of the white dwarf. Given that the optical and γ-ray light curves of some shock-powered γ-ray novae have been recently shown to be closely correlated to each other, the γ-ray pulsation phenomenon likely implies an existence of associated optical pulsations, which would provide detailed ephemerides for these extreme white dwarf binaries for further investigations in the near future.


2021 ◽  
Vol 922 (2) ◽  
pp. L42
Author(s):  
Jeremy J. Drake ◽  
Jan-Uwe Ness ◽  
Kim L. Page ◽  
G. J. M. Luna ◽  
Andrew P. Beardmore ◽  
...  

Abstract Nova Her 2021 (V1674 Her), which erupted on 2021 June 12, reached naked-eye brightness and has been detected from radio to γ-rays. An extremely fast optical decline of 2 magnitudes in 1.2 days and strong Ne lines imply a high-mass white dwarf. The optical pre-outburst detection of a 501.42 s oscillation suggests a magnetic white dwarf. This is the first time that an oscillation of this magnitude has been detected in a classical nova prior to outburst. We report X-ray outburst observations from Swift and Chandra that uniquely show (1) a very strong modulation of supersoft X-rays at a different period from reported optical periods, (2) strong pulse profile variations and the possible presence of period variations of the order of 0.1–0.3 s, and (3) rich grating spectra that vary with modulation phase and show P Cygni–type emission lines with two dominant blueshifted absorption components at ∼3000 and 9000 km s−1 indicating expansion velocities up to 11,000 km s−1. X-ray oscillations most likely arise from inhomogeneous photospheric emission related to the magnetic field. Period differences between reported pre- and post-outburst optical observations, if not due to other period drift mechanisms, suggest a large ejected mass for such a fast nova, in the range 2 × 10−5–2 × 10−4 M ⊙. A difference between the period found in the Chandra data and a reported contemporaneous post-outburst optical period, as well as the presence of period drifts, could be due to weakly nonrigid photospheric rotation.


2021 ◽  
Vol 922 (1) ◽  
pp. 25
Author(s):  
A. Kawash ◽  
L. Chomiuk ◽  
J. A. Rodriguez ◽  
J. Strader ◽  
K. V. Sokolovsky ◽  
...  

Abstract There is a long-standing discrepancy between the observed Galactic classical nova rate of ∼10 yr−1 and the predicted rate from Galactic models of ∼30–50 yr−1. One explanation for this discrepancy is that many novae are hidden by interstellar extinction, but the degree to which dust can obscure novae is poorly constrained. We use newly available all-sky three-dimensional dust maps to compare the brightness and spatial distribution of known novae to that predicted from relatively simple models in which novae trace Galactic stellar mass. We find that only half (53%) of the novae are expected to be easily detectable (g ≲ 15) with current all-sky optical surveys such as the All-Sky Automated Survey for Supernovae (ASAS-SN). This fraction is much lower than previously estimated, showing that dust does substantially affect nova detection in the optical. By comparing complementary survey results from the ASAS-SN, OGLE-IV, and Palomar Gattini IR surveys using our modeling, we find a tentative Galactic nova rate of ∼30 yr−1, though this could be as high as ∼40 yr−1, depending on the assumed distribution of novae within the Galaxy. These preliminary estimates will be improved in future work through more sophisticated modeling of nova detection in ASAS-SN and other surveys.


2021 ◽  
Vol 922 (1) ◽  
pp. L10
Author(s):  
C. E. Woodward ◽  
D. P. K. Banerjee ◽  
T. R. Geballe ◽  
K. L. Page ◽  
S. Starrfield ◽  
...  

Abstract We present near-infrared spectroscopy of Nova Herculis 2021 (V1674 Her), obtained over the first 70 days of its evolution. This fastest nova on record displays a rich emission line spectrum, including strong coronal line emission with complex structures. The hydrogen line fluxes, combined with a distance of 4.7 − 1.0 + 1.3 kpc, give an upper limit to the hydrogen ejected mass of M ej = 1.4 − 1.2 + 0.8 × 10 − 3 M ⊙. The coronal lines appeared at day 11.5, the earliest onset yet observed for any classical nova, before there was an obvious source of ionizing radiation. We argue that the gas cannot be photoionized, at least in the earliest phase, and must be shocked. Its temperature is estimated to be 105.57±0.05 K on day 11.5. Tentative analysis indicates a solar abundance of aluminum and an underabundance of calcium, relative to silicon, with respect to solar values in the ejecta. Further, we show that the vexing problem of whether collisional ionization or photoionization is responsible for coronal emission in classical novae can be resolved by correlating the temporal sequence in which the X-ray supersoft phase and the near-infrared coronal line emission appear.


2021 ◽  
Vol 104 (2) ◽  
Author(s):  
L. Canete ◽  
G. Lotay ◽  
G. Christian ◽  
D. T. Doherty ◽  
W. N. Catford ◽  
...  
Keyword(s):  

2021 ◽  
Vol 916 (1) ◽  
pp. 44
Author(s):  
Akira Arai ◽  
Akito Tajitsu ◽  
Hideyo Kawakita ◽  
Yoshiharu Shinnaka
Keyword(s):  

2021 ◽  
Vol 503 (1) ◽  
pp. 704-714
Author(s):  
Dominic McLoughlin ◽  
Katherine M Blundell ◽  
Steven Lee ◽  
Chris McCowage

ABSTRACT The classical nova YZ Reticuli was discovered in 2020 July. Shortly after this, we commenced a sustained, highly time-sampled coverage of its subsequent rapid evolution with time-resolved spectroscopy from the Global Jet Watch observatories. Its H-alpha complex exhibited qualitatively different spectral signatures in the following weeks and months. We find that these H-alpha complexes are well described by the same five Gaussian emission components throughout the six months following eruption. These five components appear to constitute two pairs of lines, from jet outflows and an accretion disc, together with an additional central component. The correlated, symmetric patterns that these jet/accretion disc pairs exhibit suggest precession, probably in response to the large perturbation caused by the nova eruption. The jet and accretion disc signatures persist from the first 10 d after brightening – evidence that the accretion disc survived the disruption. We also compare another classical nova (V6568 Sgr) that erupted in 2020 July whose H-alpha complex can be described analogously, but with faster line-of-sight jet speeds exceeding 4000 km s−1. We suggest that classical novae with higher mass white dwarfs bridge the gap between recurrent novae and classical novae such as YZ Reticuli.


2021 ◽  
Author(s):  
Drahomir Chochol ◽  
Sergey Shugarov ◽  
Ľubomír Hambálek ◽  
Augustin Skopal ◽  
Štefan Parimucha ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document