scholarly journals On the survivability of planets in young massive clusters and its implication of planet orbital architectures in globular clusters

2019 ◽  
Vol 489 (3) ◽  
pp. 4311-4321 ◽  
Author(s):  
Maxwell X Cai ◽  
S Portegies Zwart ◽  
M B N Kouwenhoven ◽  
Rainer Spurzem

ABSTRACT As of 2019 August, among the more than 4000 confirmed exoplanets, only one has been detected in a globular cluster (GC) M4. The scarce of exoplanet detections motivates us to employ direct N-body simulations to investigate the dynamical stability of planets in young massive clusters (YMC), which are potentially the progenitors of GCs. In an N = 128 k cluster of virial radius 1.7 pc (comparable to Westerlund-1), our simulations show that most wide-orbit planets (a ≥ 20 au) will be ejected within a time-scale of 10 Myr. Interestingly, more than $70{{\ \rm per\ cent}}$ of planets with a < 5 au survive in the 100 Myr simulations. Ignoring planet–planet scattering and tidal damping, the survivability at t Myr as a function of initial semimajor axis a0 in au in such a YMC can be described as fsurv(a0, t) = −0.33log10(a0)(1 − e−0.0482t) + 1. Upon ejection, about $28.8{{\ \rm per\ cent}}$ of free-floating planets (FFPs) have sufficient speeds to escape from the host cluster at a crossing time-scale. The other FFPs will remain bound to the cluster potential, but the subsequent dynamical evolution of the stellar system can result in the delayed ejection of FFPs from the host cluster. Although a full investigation of planet population in GCs requires extending the simulations to multiGyr, our results suggest that wide-orbit planets and free-floating planets are unlikely to be found in GCs.

2019 ◽  
Vol 14 (S351) ◽  
pp. 122-125
Author(s):  
Agostino Leveque ◽  
Mirosław Giersz

AbstractThe photometric properties that we could observe for Extra-Galactic Globular Clusters (EGGCs) are the integrated light of the system and for nearby EGGCs it also is possible to measure both half-light radii and the color spatial distribution, e.g. for areas smaller and larger than the half-light radius. No information about the internal dynamical state of the system could be directly obtained from observations. On the other hand, simulations of Globular Clusters (GCs) can provide detailed information about the dynamical evolution of the system.We present a preliminary study of EGGCs’ photometric properties for different dynamical evolutionary stages. We apply this study to 12Gyr old GCs simulated as part of the MOCCA Survey Database. We determine the magnitudes in different bands from their projected snapshots using the Flexible Stellar Population Synthesis (FSPS) code and we measure the half-light radii from the surface brightness.


1985 ◽  
Vol 113 ◽  
pp. 139-160 ◽  
Author(s):  
Douglas C. Heggie

This review describes work on the evolution of a stellar system during the phase which starts at the end of core collapse. It begins with an account of the models of Hénon, Goodman, and Inagaki and Lynden-Bell, as well as evaporative models, and modifications to these models which are needed in the core. Next, these models are related to more detailed numerical calculations of gaseous models, Fokker-Planck models, N-body calculations, etc., and some problems for further work in these directions are outlined. The review concludes with a discussion of the relation between theoretical models and observations of the surface density profiles and statistics of actual globular clusters.


1996 ◽  
Vol 174 ◽  
pp. 375-376
Author(s):  
P.-Y. Longaretti ◽  
C. Lagoute

We have computed simplified globular cluster evolutionary tracks which take into account the effects of internal relaxation, of the cluster rotation, of the galactic tidal field, and, in a cruder way, of stellar evolution and of gravitational shocking. The objectives are first to quantify the influence of rotation in the dynamical evolution of globular clusters; and second, to investigate the evolution of globular cluster angular momentum and flattening (Lagoute and Longaretti 1995a, Longaretti and Lagoute 1995b,c).


2018 ◽  
Vol 618 ◽  
pp. A134 ◽  
Author(s):  
A. Mucciarelli ◽  
M. Salaris ◽  
L. Monaco ◽  
P. Bonifacio ◽  
X. Fu ◽  
...  

We present Li, Na, Al, and Fe abundances of 199 lower red giant branch star members of the stellar system Omega Centauri, using high-resolution spectra acquired with FLAMES at the Very Large Telescope. The A(Li) distribution is peaked at A(Li) ∼ 1 dex with a prominent tail towards lower values. The peak of the distribution well agrees with the lithium abundances measured in lower red giant branch stars in globular clusters and Galactic field stars. Stars with A(Li) ∼ 1 dex are found at metallicities lower than [Fe/H] ∼ –1.3 dex but they disappear at higher metallicities. On the other hand, Li-poor stars are found at all metallicities. The most metal-poor stars exhibit a clear Li–Na anti-correlation, where about 30% of the sample have A(Li) lower than ∼0.8 dex, while these stars represent a small fraction of normal globular clusters. Most of the stars with [Fe/H] > –1.6 dex are Li poor and Na rich. The Li depletion measured in these stars is not observed in globular clusters with similar metallicities and we demonstrate that it is not caused by the proposed helium enhancements and/or young ages. Hence, these stars formed from a gas already depleted in lithium. Finally, we note that Omega Centauri includes all the populations (Li-normal/Na-normal, Li-normal/Na-rich, and Li-poor/Na-rich stars) observed, to a lesser extent, in mono-metallic GCs.


2019 ◽  
Vol 14 (S351) ◽  
pp. 442-446
Author(s):  
Alessandra Mastrobuono-Battisti ◽  
Sergey Khoperskov ◽  
Paola Di Matteo ◽  
Misha Haywood

AbstractThe Galactic globular cluster system went and is still going through dynamical processes that require to be explored in detail. Here we illustrate how primordial massive globular clusters born in the Milky Way’s disc evolved by stripping material from each other or even merging very early during their lives. These processes might explain the puzzling presence of star-by-star spreads in iron content observed in massive globular clusters and should be taken into account when studying globular cluster stellar populations. In this context, we show how the direct comparison between the predictions provided by our direct N-body simulations and observations can shed light on the origin and chemo-dynamical evolution of globular clusters.


2007 ◽  
Vol 3 (S246) ◽  
pp. 394-402
Author(s):  
Stephen E. Zepf

AbstractThis paper reviews some of the observational properties of globular cluster systems, with a particular focus on those that constrain and inform models of the formation and dynamical evolution of globular cluster systems. I first discuss the observational determination of the globular cluster luminosity and mass function. I show results from new very deep HST data on the M87 globular cluster system, and discuss how these constrain models of evaporation and the dynamical evolution of globular clusters. The second subject of this review is the question of how to account for the observed constancy of the globular cluster mass function with distance from the center of the host galaxy. The problem is that a radial trend is expected for isotropic cluster orbits, and while the orbits are observed to be roughly isotropic, no radial trend in the globular cluster system is observed. I review three extant proposals to account for this, and discuss observations and calculations that might determine which of these is most correct. The final subject is the origin of the very weak mass-radius relation observed for globular clusters. I discuss how this strongly constrains how globular clusters form and evolve. I also note that the only viable current proposal to account for the observed weak mass-radius relation naturally effects the globular cluster mass function, and that these two problems may be closely related.


1988 ◽  
Vol 126 ◽  
pp. 585-586
Author(s):  
Michael M. Shara ◽  
Michael Potter ◽  
Anthony F. J. Moffat ◽  
Helen Sawyer Hogg ◽  
Amelia Wehlau

Although close binaries are believed to be of importance in the dynamical evolution of globular clusters, searches for such binaries have produced mostly negative results, aside from x-ray sources. Two dwarf novae which are possible cluster members are known (Margon and Downes 1983) and two classical nova candidates have been found. The crowded field around the nova observed in 1860 close to the center of M80 makes ground-based recovery of that star impossible with present techniques. Here we report on our attempt to recover the star which erupted in 1938 about 30″ (0.8 core radii) from the center of M14.


2017 ◽  
Vol 26 (09) ◽  
pp. 1730017
Author(s):  
Marco Merafina

We analyze structural parameters of the globular clusters belonging to the Milky Way system which were listed in the latest edition of the Harris Catalogue. We search for observational evidences of the effect of tidal forces induced by the Galaxy on the dynamical and thermodynamical evolution of a globular cluster. The behavior for the [Formula: see text] distribution exhibited by the globular cluster population seems to be in contrast with theoretical results in literature about gravothermal instability, and suggest a new limit value smaller than the previous one.


1988 ◽  
Vol 126 ◽  
pp. 379-392
Author(s):  
Haldan Cohn

As our understanding of core collapse in globular clusters has improved through detailed computer simulations, attention has naturally turned to dynamical evolution of globular clusters after core collapse. The results of recent simulations of post-collapse cluster evolution are reviewed. An assessment is given of progress towards the goal of developing astrophysically realistic models that cover all phases of globular cluster evolution. A focus of this review is the stability of the post-collapse expansion phase to the large amplitude core oscillations first observed in the simulations of Sugimoto and Bettwieser and now confirmed by several other studies. The implications of core oscillations for the observation of post-collapse clusters are discussed.


Sign in / Sign up

Export Citation Format

Share Document