List of Land-Grant Institutions and Agricultural Experiment Stations in the United States

Author(s):  
R. Kenneth Horst
2014 ◽  
Vol 10 (5) ◽  
pp. 328-335
Author(s):  
Moderator: Steven G. Pueppke ◽  
Participants: Maria Gallo ◽  
Bradley I. Hillman ◽  
Bill McCutchen ◽  
Neal R. Merchen ◽  
...  

2011 ◽  
Vol 25 (2) ◽  
pp. 277-291 ◽  
Author(s):  
Jeffrey F. Derr ◽  
Aman Rana

Weeds are one of the main limiting factors in crop production, causing billions of dollars in annual global losses through degraded agricultural and silvicultural productivity. Weeds also reduce access to land and water, impair aesthetics, and disrupt human activities and well-being. The number of positions devoted to weed science teaching, research, and extension at 76 land-grant institutions across the United States and its territories was determined and compared with that for plant pathology and entomology. The number of classes and graduate students in these disciplines at those institutions was also determined. There are more than four times as many entomologists and more than three times as many plant pathologists as weed scientists at land-grant institutions. There are approximately five times as many graduate students currently in entomology and almost three times as many in plant pathology compared with weed science. There are approximately five times as many entomology and two and a half times as many plant pathology undergraduate classes compared with weed science classes. These differences increase when graduate courses are considered. Most land-grant universities have either none or few graduate classes in weed science. There are more than six times as many graduate entomology courses and more than five times as many plant pathology courses compared with weed science graduate classes. There are no departments devoted solely to weed science, whereas entomology and plant pathology departments are both common. Most universities have little to no faculty assigned to ornamental, fruit, aquatic, or forestry weed control. Number of faculty assigned to vegetable, turf, non-crop, ecology, and basic/laboratory studies in weed science are also limited. Additional university resources are needed if weed science research, teaching, and extension efforts are to meet the priority needs for the management of weeds in the agricultural, natural resources, and urban ecosystems.


HortScience ◽  
2009 ◽  
Vol 44 (3) ◽  
pp. 589-594 ◽  
Author(s):  
Kanin J. Routson ◽  
Ann A. Reilley ◽  
Adam D. Henk ◽  
Gayle M. Volk

Many apple varieties commonly planted in the United States a century ago can no longer be found in today's orchards and nurseries. Abandoned farmsteads and historic orchards harbor considerable agrobiodiversity, but the extent and location of that diversity is poorly understood. We assessed the genetic diversity of 280 apple (Malus ×domestica Borkh.) trees growing in 43 historic farmstead and orchard sites in Arizona, Utah, and New Mexico using seven microsatellite markers. We compared the samples to 109 cultivars likely introduced into the southwest in the late 19th and early 20th centuries. Genetic analysis revealed 144 genotypes represented in the 280 field samples. We identified 34 of these 144 genotypes as cultivars brought to the region by Stark Brothers Nursery and by USDA agricultural experiment stations. One hundred twenty of the total samples (43%) had DNA fingerprints that suggested they were representative of these 34 cultivars. The remaining 160 samples—representing 110 genotypes—had unique fingerprints that did not match any of the fingerprinted cultivars. The results of this study confirm for the first time that a high diversity of historic apple genotypes remain in homestead orchards in the U.S. southwest. Future efforts targeting orchards in the southwest should focus on conservation for all unique genotypes as a means to sustain both cultural heritage and biological genetic diversity.


Sign in / Sign up

Export Citation Format

Share Document