Virus Maturation

Author(s):  
Laura R. Delgui ◽  
José F. Rodríguez
Keyword(s):  
Virology ◽  
1981 ◽  
Vol 110 (2) ◽  
pp. 292-301 ◽  
Author(s):  
Ursula Scheefers-Borchel ◽  
Hans Scheefers ◽  
Judy Edwards ◽  
Dennis T. Brown

1998 ◽  
Vol 178 (2) ◽  
pp. 564-568 ◽  
Author(s):  
F. Superti ◽  
C. Amici ◽  
A. Tinari ◽  
G. Donelli ◽  
M. G. Santoro
Keyword(s):  

2018 ◽  
Author(s):  
Mohammad H. Hasan ◽  
Leslie E. Davis ◽  
Ratna K. Bollavarapu ◽  
Dipanwita Mitra ◽  
Rinkuben Parmar ◽  
...  

AbstractCytomegalovirus secondary envelopment occurs in a virus-induced cytoplasmic assembly compartment (vAC) generated via a drastic reorganization of the membranes of the secretory and endocytic systems. Dynamin is a eukaryotic GTPase that is implicated in membrane remodeling and endocytic membrane fission events; however, the role of dynamin in cellular trafficking of viruses beyond virus entry is only partially understood. Mouse embryonic fibroblasts (MEF) engineered to excise all three isoforms of dynamin were infected with mouse cytomegalovirus (MCMV-K181). Immediate early (IE1; m123) viral protein was detected in these triple dynamin knockout (TKO) cells as well as in mock-induced parental MEF at early times post infection although levels were reduced in TKO cells, indicating that virus entry was affected but not eliminated. Levels of IE1 protein and another viral early protein (m04) were normalized by 48 hours post infection; however, late protein (m55; gB) expression was significantly reduced in infected TKO cells compared to parental MEF. Ultrastructural analysis revealed intact stages of nuclear virus maturation in both cases with equivalent numbers of nucleocapsids containing packaged viral DNA (C-capsids) indicating successful viral DNA replication, capsid assembly and genome packaging. Most importantly, severe defects in virus envelopment were visualized in TKO cells but not in parental cells. Dynamin inhibitor (dynasore) treated MEF showed a phenotype similar to TKO cells upon MCMV infection confirming the role of dynamin in late maturation processes. In summary, dynamin-mediated endocytic pathways are critical for the completion of cytoplasmic stages of cytomegalovirus maturation.ImportanceViruses are known to exploit specific cellular functions at different stages of their life cycle in order to replicate, avoid immune recognition by the host and to establish a successful infection. Cytomegalovirus (CMV) infected cells are characterized by a prominent cytoplasmic inclusion (virus assembly compartment; vAC) that is the site of virus maturation and envelopment. While endocytic membranes are known to be the functional components of vAC, knowledge of specific endocytic pathways implicated in CMV maturation and envelopment is lacking. Here we show that dynamin, which is an integral part of host endocytic machinery, is largely dispensable for early stages of CMV infection but is required at a late stage of CMV maturation. Studies on dynamin function in CMV infection will help us understand the host-virus interaction pathways amenable to targeting by conventional small molecules as well as by newer generation nucleotide-based therapeutics (e.g. siRNA, CRISPR/CAS gRNA, etc.).


Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2312
Author(s):  
Sébastien Lyonnais ◽  
S. Kashif Sadiq ◽  
Cristina Lorca-Oró ◽  
Laure Dufau ◽  
Sara Nieto-Marquez ◽  
...  

A growing number of studies indicate that mRNAs and long ncRNAs can affect protein populations by assembling dynamic ribonucleoprotein (RNP) granules. These phase-separated molecular ‘sponges’, stabilized by quinary (transient and weak) interactions, control proteins involved in numerous biological functions. Retroviruses such as HIV-1 form by self-assembly when their genomic RNA (gRNA) traps Gag and GagPol polyprotein precursors. Infectivity requires extracellular budding of the particle followed by maturation, an ordered processing of ∼2400 Gag and ∼120 GagPol by the viral protease (PR). This leads to a condensed gRNA-NCp7 nucleocapsid and a CAp24-self-assembled capsid surrounding the RNP. The choreography by which all of these components dynamically interact during virus maturation is one of the missing milestones to fully depict the HIV life cycle. Here, we describe how HIV-1 has evolved a dynamic RNP granule with successive weak–strong–moderate quinary NC-gRNA networks during the sequential processing of the GagNC domain. We also reveal two palindromic RNA-binding triads on NC, KxxFxxQ and QxxFxxK, that provide quinary NC-gRNA interactions. Consequently, the nucleocapsid complex appears properly aggregated for capsid reassembly and reverse transcription, mandatory processes for viral infectivity. We show that PR is sequestered within this RNP and drives its maturation/condensation within minutes, this process being most effective at the end of budding. We anticipate such findings will stimulate further investigations of quinary interactions and emergent mechanisms in crowded environments throughout the wide and growing array of RNP granules.


Sign in / Sign up

Export Citation Format

Share Document