The HST Medium Deep Susrvey: Galaxy Morphology at High Redshift

Author(s):  
R. E. Griffiths ◽  
K. U. Ratnatunga ◽  
S. Casertano ◽  
M. Im ◽  
L. W. Neuschaefer ◽  
...  
1996 ◽  
Vol 168 ◽  
pp. 219-227
Author(s):  
R. E. Griffiths ◽  
K. U. Ratnatunga ◽  
S. Casertano ◽  
M. Im ◽  
L. W. Neuschaefer ◽  
...  

With HST and WFPC2, galaxies in the Medium Deep Survey can be reliably classified to magnitudesI814≲ 22.0 in the F814W band, at a mean redshift. The main result is the relatively high proportion (~40%) of objects which are in some way irregular or anomalous, and which are of relevance in understanding the origin of the familiar excess population of faint galaxies. These diverse objects include compact galaxies, apparently interacting pairs, galaxies with superluminous starforming regions and diffuse low surface brightness galaxies of various forms. The ‘irregulars’ and ‘peculiar’ galaxies contribute most of the excess counts in the I-band at our limiting magnitude, and may explain the ‘faint blue galaxy’ problem.


2013 ◽  
Vol 776 (1) ◽  
pp. L15 ◽  
Author(s):  
Huiyuan Wang ◽  
Feijun Xing ◽  
Kai Zhang ◽  
Tinggui Wang ◽  
Hongyan Zhou ◽  
...  
Keyword(s):  

2007 ◽  
Vol 472 (3) ◽  
pp. 739-748 ◽  
Author(s):  
M. Branchesi ◽  
I. M. Gioia ◽  
C. Fanti ◽  
R. Fanti
Keyword(s):  

2016 ◽  
Vol 820 (1) ◽  
pp. 71 ◽  
Author(s):  
Brian D. Crosby ◽  
Brian W. O’Shea ◽  
Timothy C. Beers ◽  
Jason Tumlinson

2020 ◽  
Vol 501 (1) ◽  
pp. 269-280
Author(s):  
Xuheng Ding ◽  
Tommaso Treu ◽  
Simon Birrer ◽  
Adriano Agnello ◽  
Dominique Sluse ◽  
...  

ABSTRACT One of the main challenges in using high-redshift active galactic nuclei (AGNs) to study the correlations between the mass of a supermassive black hole ($\mathcal {M}_{\rm BH}$) and the properties of its active host galaxy is instrumental resolution. Strong lensing magnification effectively increases instrumental resolution and thus helps to address this challenge. In this work, we study eight strongly lensed AGNs with deep Hubble Space Telescope imaging, using the lens modelling code lenstronomy to reconstruct the image of the source. Using the reconstructed brightness of the host galaxy, we infer the host galaxy stellar mass based on stellar population models. $\mathcal {M}_{\rm BH}$ are estimated from broad emission lines using standard methods. Our results are in good agreement with recent work based on non-lensed AGNs, demonstrating the potential of using strongly lensed AGNs to extend the study of the correlations to higher redshifts. At the moment, the sample size of lensed AGNs is small and thus they provide mostly a consistency check on systematic errors related to resolution for non-lensed AGNs. However, the number of known lensed AGNs is expected to increase dramatically in the next few years, through dedicated searches in ground- and space-based wide-field surveys, and they may become a key diagnostic of black holes and galaxy co-evolution.


2020 ◽  
Vol 501 (2) ◽  
pp. 1663-1676
Author(s):  
R Barnett ◽  
S J Warren ◽  
N J G Cross ◽  
D J Mortlock ◽  
X Fan ◽  
...  

ABSTRACT We present the results of a new, deeper, and complete search for high-redshift 6.5 < z < 9.3 quasars over 977 deg2 of the VISTA Kilo-Degree Infrared Galaxy (VIKING) survey. This exploits a new list-driven data set providing photometry in all bands Z, Y, J, H, Ks, for all sources detected by VIKING in J. We use the Bayesian model comparison (BMC) selection method of Mortlock et al., producing a ranked list of just 21 candidates. The sources ranked 1, 2, 3, and 5 are the four known z > 6.5 quasars in this field. Additional observations of the other 17 candidates, primarily DESI Legacy Survey photometry and ESO FORS2 spectroscopy, confirm that none is a quasar. This is the first complete sample from the VIKING survey, and we provide the computed selection function. We include a detailed comparison of the BMC method against two other selection methods: colour cuts and minimum-χ2 SED fitting. We find that: (i) BMC produces eight times fewer false positives than colour cuts, while also reaching 0.3 mag deeper, (ii) the minimum-χ2 SED-fitting method is extremely efficient but reaches 0.7 mag less deep than the BMC method, and selects only one of the four known quasars. We show that BMC candidates, rejected because their photometric SEDs have high χ2 values, include bright examples of galaxies with very strong [O iii] λλ4959,5007 emission in the Y band, identified in fainter surveys by Matsuoka et al. This is a potential contaminant population in Euclid searches for faint z > 7 quasars, not previously accounted for, and that requires better characterization.


2020 ◽  
Vol 15 (S359) ◽  
pp. 136-140
Author(s):  
Minju M. Lee ◽  
Ichi Tanaka ◽  
Rohei Kawabe

AbstractWe present studies of a protocluster at z =2.5, an overdense region found close to a radio galaxy, 4C 23.56, using ALMA. We observed 1.1 mm continuum, two CO lines (CO (4–3) and CO (3–2)) and the lower atomic carbon line transition ([CI](3P1-3P0)) at a few kpc (0″.3-0″.9) resolution. The primary targets are 25 star-forming galaxies selected as Hα emitters (HAEs) that are identified with a narrow band filter. These are massive galaxies with stellar masses of > 1010Mʘ that are mostly on the galaxy main sequence at z =2.5. We measure the molecular gas mass from the independent gas tracers of 1.1 mm, CO (3–2) and [CI], and investigate the gas kinematics of galaxies from CO (4–3). Molecular gas masses from the different measurements are consistent with each other for detection, with a gas fraction (fgas = Mgas/(Mgas+ Mstar)) of ≃ 0.5 on average but with a caveat. On the other hand, the CO line widths of the protocluster galaxies are typically broader by ˜50% compared to field galaxies, which can be attributed to more frequent, unresolved gas-rich mergers and/or smaller sizes than field galaxies, supported by our high-resolution images and a kinematic model fit of one of the galaxies. We discuss the expected scenario of galaxy evolution in protoclusters at high redshift but future large surveys are needed to get a more general view.


Author(s):  
Arpan Das ◽  
Dominik R G Schleicher ◽  
Nathan W C Leigh ◽  
Tjarda C N Boekholt

Abstract More than two hundred supermassive black holes (SMBHs) of masses ≳ 109 M⊙ have been discovered at z ≳ 6. One promising pathway for the formation of SMBHs is through the collapse of supermassive stars (SMSs) with masses ∼103 − 5 M⊙ into seed black holes which could grow upto few times 109 M⊙ SMBHs observed at z ∼ 7. In this paper, we explore how SMSs with masses ∼103 − 5 M⊙ could be formed via gas accretion and runaway stellar collisions in high-redshift, metal-poor nuclear star clusters (NSCs) using idealised N-body simulations. We explore physically motivated accretion scenarios, e.g. Bondi-Hoyle-Lyttleton accretion and Eddington accretion, as well as simplified scenarios such as constant accretions. While gas is present, the accretion timescale remains considerably shorter than the timescale for collisions with the most massive object (MMO). However, overall the timescale for collisions between any two stars in the cluster can become comparable or shorter than the accretion timescale, hence collisions still play a crucial role in determining the final mass of the SMSs. We find that the problem is highly sensitive to the initial conditions and our assumed recipe for the accretion, due to the highly chaotic nature of the problem. The key variables that determine the mass growth mechanism are the mass of the MMO and the gas reservoir that is available for the accretion. Depending on different conditions, SMSs of masses ∼103 − 5 M⊙ can form for all three accretion scenarios considered in this work.


Sign in / Sign up

Export Citation Format

Share Document