Evidence for the Role of CBR, an Algal Elip Homolog, in Non-Photochemical Quenching of Chlorophyll Fluorescence

Author(s):  
Paula Braun ◽  
Gabi Banet ◽  
Shmuel Malkin ◽  
Ada Zamir
2005 ◽  
Vol 33 (4) ◽  
pp. 858-862 ◽  
Author(s):  
A. Dreuw ◽  
G.R. Fleming ◽  
M. Head-Gordon

NPQ (non-photochemical quenching) is a fundamental photosynthetic mechanism by which plants protect themselves against excess excitation energy and the resulting photodamage. A discussed molecular mechanism of the so-called feedback de-excitation component (qE) of NPQ involves the formation of a quenching complex. Recently, we have studied the influence of formation of a zeaxanthin–chlorophyll complex on the excited states of the pigments using high-level quantum chemical methodology. In the case of complex formation, electron-transfer quenching of chlorophyll-excited states by carotenoids is a relevant quenching mechanism. Furthermore, additionally occurring charge-transfer excited states can be exploited experimentally to prove the existence of the quenching complex during NPQ.


1995 ◽  
Vol 22 (2) ◽  
pp. 231 ◽  
Author(s):  
N Mohanty ◽  
HY Yamamoto

Dibucaine reportedly inhibits the light-induced transthylakoid proton gradient of chloroplasts without inhibiting energy-dependent non-photochemical chlorophyll fluorescence quenching (Laasch, H. and Weis, E. (1989). Photosynthesis Research 22, 137-146). We show that dibucaine can inhibit fluorescence quenching, depending on the de-epoxidation state of the xanthophyll cycle. Whereas dibucaine (20-40 μM) had little effect on fluorescence quenching in pre-illuminated-type thylakoids (loaded with zeaxanthin and antheraxanthin), it strongly inhibited quenching in dark-adapted-type thylakoids (no preinduction of de-epoxidation). Dibucaine inhibited lumen acidification similarly in both types of thylakoids and also the induction of violaxanthin de-epoxidation in dark-adapted thylakoids. Thus dark-adapted and pre-illuminated thylakoids differed in de-epoxidation states and their suspectibility to dibucaine inhibition of fluorescence quenching corresponded to this difference. The mechanism of inhibition of de-epoxidation by dibucaine is unclear. It could be due to the inhibition of lumen acidification but an inhibition of the violaxanthin available for de-epoxidation is not excluded. High dibucaine concentrations inhibited de-epoxidase activity directly. Dibucaine inhibition of fluorescence quenching, however, is not limited to the inhibition of de-epoxidation. Small but clear effects on fluorescence quenching were present in thylakoids even with de-epoxidation preinduced. Moreover, thylakoids with preinduced de-epoxidation were more resistant to dibucaine inhibition of fluorescene quenching when poised by salt treatments for proton partitioning into membrane-sequestered domains than when poised for proton partitioning into delocalised domains. We conclude that non-photochemical quenching of chlorophyll fluorescence depends on both de-epoxidised xanthophylls and sequestered proton domains in the thylakoid membranes


Author(s):  
Franco V. A. Camargo ◽  
Federico Perozeni ◽  
Gabriel de la Cruz Valbuena ◽  
Luca Zuliani ◽  
Samim Sardar ◽  
...  

2002 ◽  
Vol 29 (10) ◽  
pp. 1141 ◽  
Author(s):  
Govindjee ◽  
Manfredo J. Seufferheld

This paper deals first with the early, although incomplete, history of photoinhibition, of 'non-QA-related chlorophyll (Chl) a fluorescence changes', and the xanthophyll cycle that preceded the discovery of the correlation between non-photochemical quenching of Chl a fluorescence (NPQ) and conversion of violaxanthin to zeaxanthin. It includes the crucial observation that the fluorescence intensity quenching, when plants are exposed to excess light, is indeed due to a change in the quantum yield of fluorescence. The history ends with a novel turn in the direction of research — isolation and characterization of NPQ xanthophyll-cycle mutants of Chlamydomonas reinhardtii Dangeard and Arabidopsis thaliana (L.) Heynh., blocked in conversion of violaxanthin to zeaxanthin, and zeaxanthin to violaxanthin, respectively. In the second part of the paper, we extend the characterization of two of these mutants (npq1, which accumulates violaxanthin, and npq2, which accumulates zeaxanthin) through parallel measurements on growth, and several assays of PSII function: oxygen evolution, Chl a fluorescence transient (the Kautsky effect), the two-electron gate function of PSII, the back reactions around PSII, and measurements of NPQ by pulse-amplitude modulation (PAM 2000) fluorimeter. We show that, in the npq2 mutant, Chl a fluorescence is quenched both in the absence and presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). However, no differences are observed in functioning of the electron-acceptor side of PSII — both the two-electron gate and the back reactions are unchanged. In addition, the role of protons in fluorescence quenching during the 'P-to-S' fluorescence transient was confirmed by the effect of nigericin in decreasing this quenching effect. Also, the absence of zeaxanthin in the npq1 mutant leads to reduced oxygen evolution at high light intensity, suggesting another protective role of this carotenoid. The available data not only support the current model of NPQ that includes roles for both pH and the xanthophylls, but also are consistent with additional protective roles of zeaxanthin. However, this paper emphasizes that we still lack sufficient understanding of the different parts of NPQ, and that the precise mechanisms of photoprotection in the alga Chlamydomonas may not be the same as those in higher plants.


2022 ◽  
Author(s):  
Xin Liu ◽  
Wojciech J Nawrocki ◽  
Roberta Croce

Non-photochemical quenching (NPQ) is the process that protects photosynthetic organisms from photodamage by dissipating the energy absorbed in excess as heat. In the model green alga Chlamydomonas reinhardtii, NPQ was abolished in the knock-out mutants of the pigment-protein complexes LHCSR3 and LHCBM1. However, while LHCSR3 was shown to be a pH sensor and switching to a quenched conformation at low pH, the role of LHCBM1 in NPQ has not been elucidated yet. In this work, we combine biochemical and physiological measurements to study short-term high light acclimation of npq5, the mutant lacking LHCBM1. We show that while in low light in the absence of this complex, the antenna size of PSII is smaller than in its presence, this effect is marginal in high light, implying that a reduction of the antenna is not responsible for the low NPQ. We also show that the mutant expresses LHCSR3 at the WT level in high light, indicating that the absence of this complex is also not the reason. Finally, NPQ remains low in the mutant even when the pH is artificially lowered to values that can switch LHCSR3 to the quenched conformation. It is concluded that both LHCSR3 and LHCBM1 need to be present for the induction of NPQ and that LHCBM1 is the interacting partner of LHCSR3. This interaction can either enhance the quenching capacity of LHCSR3 or connect this complex with the PSII supercomplex.


2016 ◽  
Vol 13 (16) ◽  
pp. 4637-4643 ◽  
Author(s):  
Juntian Xu ◽  
Lennart T. Bach ◽  
Kai G. Schulz ◽  
Wenyan Zhao ◽  
Kunshan Gao ◽  
...  

Abstract. Coccolithophores are a group of phytoplankton species which cover themselves with small scales (coccoliths) made of calcium carbonate (CaCO3). The reason why coccolithophores form these calcite platelets has been a matter of debate for decades but has remained elusive so far. One hypothesis is that they play a role in light or UV protection, especially in surface dwelling species like Emiliania huxleyi, which can tolerate exceptionally high levels of solar radiation. In this study, we tested this hypothesis by culturing a calcified and a naked strain under different light conditions with and without UV radiation. The coccoliths of E. huxleyi reduced the transmission of visible radiation (400–700 nm) by 7.5 %, that of UV-A (315–400 nm) by 14.1 % and that of UV-B (280–315 nm) by 18.4 %. Growth rates of the calcified strain (PML B92/11) were about 2 times higher than those of the naked strain (CCMP 2090) under indoor constant light levels in the absence of UV radiation. When exposed to outdoor conditions (fluctuating sunlight with UV radiation), growth rates of calcified cells were almost 3.5 times higher compared to naked cells. Furthermore, the relative electron transport rate was 114 % higher and non-photochemical quenching (NPQ) was 281 % higher in the calcified compared to the naked strain, implying higher energy transfer associated with higher NPQ in the presence of calcification. When exposed to natural solar radiation including UV radiation, the maximal quantum yield of photosystem II was only slightly reduced in the calcified strain but strongly reduced in the naked strain. Our results reveal an important role of coccoliths in mitigating light and UV stress in E. huxleyi.


Sign in / Sign up

Export Citation Format

Share Document