Identification of Carbonic Anhydrase Gene Which is Essential to the Inorganic Carbon Concentrating Mechanism in Cyanobacteria

1992 ◽  
pp. 799-802 ◽  
Author(s):  
Hideya Fukuzawa ◽  
Eiji Suzuki ◽  
Shigetoh Miyachi
1998 ◽  
Vol 76 (6) ◽  
pp. 1092-1097 ◽  
Author(s):  
Hideya Fukuzawa ◽  
Kimitsune Ishizaki ◽  
Kenji Miura ◽  
Shoji Matsueda ◽  
Tatsuya Ino-ue ◽  
...  

To isolate genes essential to the carbon concentrating mechanism and the CO2-signal transduction mechanisms, seven high-CO2 requiring mutants were isolated from Chlamydomonas reinhardtii by the insertion of nit1 gene encoding nitrate reductase. These mutants were grouped into two classes. Class I contains mutants that show a severe CO2-requiring phenotype (C1 and C3). Class II includes those with a moderate CO2-requiring phenotype (C2, C5, C7, C15, and C16). One of the class II mutants, C5, appeared to be defective in the utilization of intracellularly accumulated inorganic carbon. On the other hand, the mutant C16 appeared to be defective not only in the uptake of carbon but also in the induction of the periplasmic carbonic anhydrase gene, CAH1, as well as in the development of pyrenoid structure under low-CO2 conditions. These mutations in C5 and C16 mutants appeared to be caused by single insertional events of the introduced DNA fragment into the genomic DNA, suggesting that their corresponding genes could be tagged using the nit1 gene.Key words: carbon concentrating mechanism, carbonic anhydrase, gene tagging, insertional mutagenesis, nitrate reductase.


2005 ◽  
Vol 83 (7) ◽  
pp. 917-928 ◽  
Author(s):  
Erica B Young ◽  
John Beardall

The marine microalga Dunaliella tertiolecta Butcher expresses a high affinity for dissolved inorganic carbon (DIC) through a carbon-concentrating mechanism (CCM), known to be influenced by CO2 availability and instantaneous light supply. However, the regulation by light and nutrient supply during growth is less understood, although N and Fe limitation impose an energy limitation by compromising the photosynthetic apparatus. Dunaliella tertiolecta was grown under steady-state conditions of limited light, N, and Fe availability, and the affinity for DIC was measured under saturating light. High affinity DIC uptake capacity was maintained by D. tertiolecta under all growth-limiting conditions, but was modulated in response to the limiting resource. Affinity of photosynthesis for DIC(k0.5) was significantly reduced in cells grown under low light, both in turbidostats and in batch culture (p ≤ 0.03), although cell-normalized Pmax was not significantly affected. In contrast, N and Fe limitation resulted in a significant reduction in cell chlorophyll, Pmax, and maximum photosystem II quantum yield (Fv/Fm), but the affinity for DIC was enhanced with increasing N or Fe stress. While the affinity for DIC improved with increasing N stress (k0.5 < 17.8 µM at µ = 0.27 d–1 versus k0.5 > 26 µM at µ ≥ 0.77 d–1), light use efficiency (α) was impaired under N limitation, suggesting a trade-off between light harvesting capacity and active DIC uptake. Stable C isotope analysis of Fe-limited cells confirmed a lower fractionation by the most Fe-limited cells, consistent with the k0.5 data and more active DIC acquisition (δ13C = –19.56 at µ = 0.27 d–1 cf. δ13C = –26.28 at µ = 0.77 d–1). Assessment of affinity for DIC using k0.5 was supported by the close fit of P versus DIC curves to Michaelis–Menten kinetics; with the high DIC affinity of D. tertiolecta, there was poor resolution in the initial slope of the P versus DIC curve as a parameter of affinity for DIC. Enhanced DIC uptake efficiency under Fe and N limitation may relate to improved resource-use efficiency conferred by CCM activity.Key words: algae, carbon-concentrating mechanism, iron, light, nitrogen, nutrient limitation, photosynthesis.


2008 ◽  
Vol 190 (24) ◽  
pp. 8234-8237 ◽  
Author(s):  
Shulu Zhang ◽  
Kevin W. Spann ◽  
Laurie K. Frankel ◽  
James V. Moroney ◽  
Terry M. Bricker

ABSTRACT Insertional transposon mutations in the sll0804 and slr1306 genes were found to lead to a loss of optimal photoautotrophy in the cyanobacterium Synechocystis sp. strain PCC 6803 grown under ambient CO2 concentrations (350 ppm). Mutants containing these insertions (4BA2 and 3ZA12, respectively) could grow photoheterotrophically on glucose or photoautotrophically at elevated CO2 concentrations (50,000 ppm). Both of these mutants exhibited an impaired affinity for inorganic carbon. Consequently, the Sll0804 and Slr1306 proteins appear to be putative components of the carbon-concentrating mechanism in Synechocystis sp. strain PCC 6803.


2018 ◽  
Vol 9 ◽  
Author(s):  
Kwon Hwangbo ◽  
Jong-Min Lim ◽  
Seok-Won Jeong ◽  
Jayaraman Vikramathithan ◽  
Youn-Il Park ◽  
...  

2005 ◽  
Vol 83 (7) ◽  
pp. 780-795 ◽  
Author(s):  
Mautusi Mitra ◽  
Catherine B Mason ◽  
Ying Xiao ◽  
Ruby A Ynalvez ◽  
Scott M Lato ◽  
...  

Carbonic anhydrases (CAs) are zinc-containing metalloenzymes that catalyze the reversible interconversion of CO2 and HCO3–. Aquatic photosynthetic organisms have evolved different forms of CO2-concentrating mechanisms to aid Rubisco in capturing CO2 from the surrounding environment. One aspect of all CO2-concentrating mechanisms is the critical roles played by various specially localized extracellular and intracellular CAs. There are three evolutionarily unrelated CA families designated α-, β-, and γ-CA. In the green alga, Chlamydomonas reinhardtii Dangeard, eight CAs have now been identified, including three α-CAs and five β-CAs. In addition, C. reinhardtii has another CA-like gene, Glp1 that is similar to known γ-CAs. To characterize these different CA isoforms, some of the CA genes have been overexpressed to determine whether the proteins have CA activity and to generate antibodies for in vivo immunolocalization. The CA proteins Cah3, Cah6, and Cah8, and the γ-CA-like protein, Glp1, have been overexpressed. Cah3, Cah6, and Cah8 have CA activity, but Glp1 does not. At least two of these proteins, Cah3 and Cah6, are localized to the chloroplast. Using immunolocalization and sequence analyses, we have determined that Cah6 is located to the chloroplast stroma and confirmed that Cah3 is localized to the chloroplast thylakoid lumen. Activity assays show that Cah3 is 100 times more sensitive to sulfonamides than Cah6. We present a model on how these two chloroplast CAs might participate in the CO2-concentrating mechanism of C. reinhardtii. Key words: carbonic anhydrase, CO2-concentrating mechanism, Chlamydomonas, immunolocalization.


1994 ◽  
pp. 299-304 ◽  
Author(s):  
Rakefet Schwarz ◽  
Judy Lieman-Hurwitz ◽  
Michal Ronen-Tarazi ◽  
Chana Gabai ◽  
Miriam Hassidim ◽  
...  

1999 ◽  
pp. 561-571
Author(s):  
Aaron Kaplan ◽  
Michal Ronen-Tarazi ◽  
Dan Tchernov ◽  
David J. Bonfil ◽  
Hagit Zer ◽  
...  

2007 ◽  
Vol 30 (11) ◽  
pp. 1422-1435 ◽  
Author(s):  
S. C. BUREY ◽  
V. POROYKO ◽  
Z. N. ERGEN ◽  
S. FATHI-NEJAD ◽  
C. SCHÜLLER ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document