The carbonic anhydrase gene families of Chlamydomonas reinhardtii

2005 ◽  
Vol 83 (7) ◽  
pp. 780-795 ◽  
Author(s):  
Mautusi Mitra ◽  
Catherine B Mason ◽  
Ying Xiao ◽  
Ruby A Ynalvez ◽  
Scott M Lato ◽  
...  

Carbonic anhydrases (CAs) are zinc-containing metalloenzymes that catalyze the reversible interconversion of CO2 and HCO3–. Aquatic photosynthetic organisms have evolved different forms of CO2-concentrating mechanisms to aid Rubisco in capturing CO2 from the surrounding environment. One aspect of all CO2-concentrating mechanisms is the critical roles played by various specially localized extracellular and intracellular CAs. There are three evolutionarily unrelated CA families designated α-, β-, and γ-CA. In the green alga, Chlamydomonas reinhardtii Dangeard, eight CAs have now been identified, including three α-CAs and five β-CAs. In addition, C. reinhardtii has another CA-like gene, Glp1 that is similar to known γ-CAs. To characterize these different CA isoforms, some of the CA genes have been overexpressed to determine whether the proteins have CA activity and to generate antibodies for in vivo immunolocalization. The CA proteins Cah3, Cah6, and Cah8, and the γ-CA-like protein, Glp1, have been overexpressed. Cah3, Cah6, and Cah8 have CA activity, but Glp1 does not. At least two of these proteins, Cah3 and Cah6, are localized to the chloroplast. Using immunolocalization and sequence analyses, we have determined that Cah6 is located to the chloroplast stroma and confirmed that Cah3 is localized to the chloroplast thylakoid lumen. Activity assays show that Cah3 is 100 times more sensitive to sulfonamides than Cah6. We present a model on how these two chloroplast CAs might participate in the CO2-concentrating mechanism of C. reinhardtii. Key words: carbonic anhydrase, CO2-concentrating mechanism, Chlamydomonas, immunolocalization.

2005 ◽  
Vol 83 (7) ◽  
pp. 721-734 ◽  
Author(s):  
Anthony K-C So ◽  
George S Espie

Carbonic anhydrases (CAs) are ubiquitous zinc metalloenzymes that catalyze the reversible dehydration of HCO3–. These enzymes are encoded by at least five distinct, evolutionarily unrelated gene families, four of which have been found among the cyanobacteria examined to date. However, the distribution and expression of these cyanobacterial α-, β-, γ-, and ∈-CAs and their homologues among species have not yet been investigated in great detail. In this study, the number, distribution, and catalytic function of known and putative CAs and CA-like proteins from a variety of freshwater and marine cyanobacteria are examined.Key words: carbonic anhydrase, carboxysome, CO2-concentrating mechanism, cyanobacteria, Prochlorococcus, Synechococcus, Synechocystis.


Author(s):  
Ashok Aspatwar ◽  
Susanna Haapanen ◽  
Seppo Parkkila

Carbonic anhydrases (CAs) are metalloenzymes that are omnipresent in nature. The CAs catalyze the basic reaction of reversible hydration of CO2 to HCO3− and H+ in all living organisms. Photosynthetic organisms contain six evolutionarily different classes of CAs, namely, α-CAs, β-CAs, γ-CAs, δ-CAs, ζ-CAs, and θ-CAs. Many of the photosynthetic organisms contain multiple isoforms of each CA family. Model alga, Chlamydomonas reinhardtii contains fifteen CAs belonging to three different CA gene families. Out of the fifteen CAs, three belong to α-CA gene family, nine to β-CA gene family, and three are γ-CAs. The multiple copies of the CAs in each gene family may be due to gene duplications within the particular CA gene family. The CAs of Chlamydomonas reinhardtii are localized in different subcellular compartments of this unicellular alga. The presence of a large number of CAs and their diverse subcellular localization within a single cell suggests the importance of these enzymes in metabolic and biochemical roles they perform in this unicellular alga. In the present review, we update the information on molecular biology of all the fifteen CAs and their metabolic and biochemical roles in Chlamydomonas reinhardtii. We also present a hypothetical model showing the known functions of CAs and predicting the functions of CAs for which precise metabolic roles are yet to be discovered.


1998 ◽  
Vol 76 (6) ◽  
pp. 1092-1097 ◽  
Author(s):  
Hideya Fukuzawa ◽  
Kimitsune Ishizaki ◽  
Kenji Miura ◽  
Shoji Matsueda ◽  
Tatsuya Ino-ue ◽  
...  

To isolate genes essential to the carbon concentrating mechanism and the CO2-signal transduction mechanisms, seven high-CO2 requiring mutants were isolated from Chlamydomonas reinhardtii by the insertion of nit1 gene encoding nitrate reductase. These mutants were grouped into two classes. Class I contains mutants that show a severe CO2-requiring phenotype (C1 and C3). Class II includes those with a moderate CO2-requiring phenotype (C2, C5, C7, C15, and C16). One of the class II mutants, C5, appeared to be defective in the utilization of intracellularly accumulated inorganic carbon. On the other hand, the mutant C16 appeared to be defective not only in the uptake of carbon but also in the induction of the periplasmic carbonic anhydrase gene, CAH1, as well as in the development of pyrenoid structure under low-CO2 conditions. These mutations in C5 and C16 mutants appeared to be caused by single insertional events of the introduced DNA fragment into the genomic DNA, suggesting that their corresponding genes could be tagged using the nit1 gene.Key words: carbon concentrating mechanism, carbonic anhydrase, gene tagging, insertional mutagenesis, nitrate reductase.


Metabolites ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 73 ◽  
Author(s):  
Lyudmila Ignatova ◽  
Natalia Rudenko ◽  
Elena Zhurikova ◽  
Maria Borisova-Mubarakshina ◽  
Boris Ivanov

The review presents data on the location, nature, properties, number, and expression of carbonic anhydrase genes in the photosynthesizing cells of C3 plants. The available data about the presence of carbonic anhydrases in plasma membrane, cytoplasm, mitochondria, chloroplast stroma and thylakoids are scrutinized. Special attention was paid to the presence of carbonic anhydrase activities in the different parts of thylakoids, and on collation of sources of these activities with enzymes encoded by the established genes of carbonic anhydrases. The data are presented to show that the consistent incorporation of carbonic anhydrases belonging to different families of these enzymes forms a coherent system of CO2 molecules transport from air to chloroplasts in photosynthesizing cells, where they are included in organic molecules in the carboxylation reaction. It is discussed that the manifestation of the activity of a certain carbonic anhydrase depends on environmental conditions and the stage of ontogenesis.


2019 ◽  
Author(s):  
JM García-Lobo ◽  
Y Ortiz ◽  
C González-Riancho ◽  
A Seoane ◽  
B Arellano-Reynoso ◽  
...  

AbstractSome Brucella isolates are known to require an increased concentration of CO2 for growth, especially in the case of primary cultures obtained directly from infected animals. Moreover, the different Brucella species and biovars show a characteristic pattern of CO2 requirement, and this trait has been included among the routine typing tests used for species and biovar differentiation. By comparing the differences in gene content among different CO2-dependent and CO2-independent Brucella strains we have confirmed that carbonic anhydrase II (CA II), is the enzyme responsible for this phenotype in all the Brucella strains tested. Brucella species contain two carbonic anhydrases of the β family, CA I and CA II; genetic polymorphisms exist for both of them in different isolates, but only those putatively affecting the activity of CA II correlate with the CO2 requirement of the corresponding isolate. Analysis of these polymorphisms does not allow the determination of CA I functionality, while the polymorphisms in CA II consist of small deletions that cause a frameshift that changes the C-terminus of the protein, probably affecting its dimerization status, essential for the activity.CO2-independent mutants arise easily in vitro, although with a low frequency ranging from 10−6 to 10−10 depending on the strain. These mutants carry compensatory mutations that produce a full length CA II. At the same time, no change was observed in the sequence coding for CA I. A competitive index assay designed to evaluate the fitness of a CO2-dependent strain compared to its corresponding CO2-independent strain revealed that while there is no significant difference when the bacteria are grown in culture plates, growth in vivo in a mouse model of infection provides a significant advantage to the CO2-dependent strain. This could explain why some Brucella isolates are CO2-dependent in primary isolation. The polymorphism described here also allows the in silico determination of the CO2 requirement status of any Brucella strain.


2002 ◽  
Vol 205 (5) ◽  
pp. 591-602 ◽  
Author(s):  
Maria del Pilar Corena ◽  
Theresa J. Seron ◽  
Herm K. Lehman ◽  
Judith D. Ochrietor ◽  
Andrea Kohn ◽  
...  

SUMMARYThe larval mosquito midgut exhibits one of the highest pH values known in a biological system. While the pH inside the posterior midgut and gastric caeca ranges between 7.0 and 8.0, the pH inside the anterior midgut is close to 11.0. Alkalization is likely to involve bicarbonate/carbonate ions. These ions are produced in vivo by the enzymatic action of carbonic anhydrase. The purpose of this study was to investigate the role of this enzyme in the alkalization mechanism, to establish its presence and localization in the midgut of larval Aedes aegypti and to clone and characterize its cDNA. Here, we report the physiological demonstration of the involvement of carbonic anhydrase in midgut alkalization. Histochemistry and in situ hybridization showed that the enzyme appears to be localized throughout the midgut, although preferentially in the gastric caeca and posterior regions with specific cellular heterogeneity. Furthermore, we report the cloning and localization of the first carbonic anhydrase from mosquito larval midgut. A cDNA clone from Aedes aegypti larval midgut revealed sequence homology to α-carbonic anhydrases from vertebrates. Bioinformatics indicates the presence of at least six carbonic anhydrases or closely related genes in the genome of another dipteran, the fruit fly Drosophila melanogaster. Molecular analyses suggest that the larval mosquito may also possess multiple forms.


2016 ◽  
Vol 7 (3) ◽  
pp. 23-27 ◽  
Author(s):  
Abhijit Bhakta ◽  
Maitreyi Bandyopadhyay ◽  
Sayantan Dasgupta ◽  
Santanu Sen ◽  
Arun Kumar ◽  
...  

Background: In contrast to its role as poison, hydrogen sulfide (H2S) is recently considered as a gaso-transmitter which mediates important physiologic functions in humans. Evidence is accumulating to demonstrate that inhibitors of H2S production or therapeutic H2S donor compounds exert significant effects in various experimental models. Carbonic anhydrases (CA) are a group of zinc-containing metalloenzymes that catalyse the reversible hydration of carbon dioxide. CAs activity in erythrocytes (CAI and CAII) has recently been observed to be associated with various pathological conditions especially in diabetes mellitus, hypertension and lipid disorders. Alteration of this enzyme activity has been reported by the effect of advanced glycation end products methylglyoxal and reduced glutathione.   Aims and Objectives: As H2S, being a mediator of many physiological functions and synthesized in vivo, may affect functions of many intracellular proteins like carbonic anhydrase, the objective of this study is to find out if there is any change in the carbonic anhydrase activity under the effect of H2S- donor NaHS in dose dependant manner using RBC model in vitro.Materials and Methods: Blood sample was collected from forty (40) numbers of healthy volunteers of 18-40 years of in heparin containing vials and packed cells were prepared immediately by centrifugation  The packed erythrocytes were washed three times with normal saline and  diluted (1:10) with the normal saline. One ml each of diluted packed cells was taken in eight test tubes. Serial dilutions of NaHS (1to 250 µMol/L) was added to all the test tubes except for the first test tube where only normal saline was added and   incubated at room temperature for one hour. Haemolysates was prepared from the erythrocytes with equal volume of distilled water in each tube and the CA activity was determined in the haemolysates using standardized method.Results: There is significant increase of CA activity in dose dependent manner under the effect of NaHS and also compared to the activity of hemolysate prepared without NaHS.  Conclusions:Our study for the first time demonstrated that the Carbonic Anhydrase activity of erythrocytes is significantly increases by the effect of NaHS and this study reveals some important biological role of H2S and carbonic anhydrase.Asian Journal of Medical Sciences Vol. 7(3) 2016 23-27


2020 ◽  
Vol 21 (7) ◽  
pp. 2442
Author(s):  
Jyoti Singh Tomar ◽  
Jun Shen

Carbonic anhydrase is a ubiquitous metalloenzyme that catalyzes the reversible interconversion of CO2/HCO3−. Equilibrium of these species is maintained by the action of carbonic anhydrase. Recent advances in magnetic resonance spectroscopy have allowed, for the first time, in vivo characterization of carbonic anhydrase in the human brain. In this article, we review the theories and techniques of in vivo 13C magnetization (saturation) transfer magnetic resonance spectroscopy as they are applied to measuring the rate of exchange between CO2 and HCO3− catalyzed by carbonic anhydrase. Inhibitors of carbonic anhydrase have a wide range of therapeutic applications. Role of carbonic anhydrases and their inhibitors in many diseases are also reviewed to illustrate future applications of in vivo carbonic anhydrase assessment by magnetic resonance spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document