Band Structure and Transmission of Photonic Media: A Real-Space Finite-Difference Calculation with the R-Matrix Propagator

1996 ◽  
pp. 341-354
Author(s):  
J. Merle Elson ◽  
Phuc Tran
Author(s):  
Vurgaftman Igor

This chapter presents a detailed development of several numerical methods for calculating the band structure of semiconductor quantum wells and superlattices. These include the transfer-matrix method, the finite-difference method, and the reciprocal-space approach. The relative merits and drawbacks of each approach are briefly considered. It is pointed out that real-space methods often introduce spurious states for the most common forms of the Hamiltonian. The chapter also discusses how the tight-binding and pseudopotential methods can be applied to model quantum structures.


2016 ◽  
Vol 200 ◽  
pp. 87-95 ◽  
Author(s):  
Wenhui Mi ◽  
Xuecheng Shao ◽  
Chuanxun Su ◽  
Yuanyuan Zhou ◽  
Shoutao Zhang ◽  
...  

Geophysics ◽  
2002 ◽  
Vol 67 (4) ◽  
pp. 1270-1274 ◽  
Author(s):  
Le‐Wei Mo ◽  
Jerry M. Harris

Traveltimes of direct arrivals are obtained by solving the eikonal equation using finite differences. A uniform square grid represents both the velocity model and the traveltime table. Wavefront discontinuities across a velocity interface at postcritical incidence and some insights in direct‐arrival ray tracing are incorporated into the traveltime computation so that the procedure is stable at precritical, critical, and postcritical incidence angles. The traveltimes can be used in Kirchhoff migration, tomography, and NMO corrections that require traveltimes of direct arrivals on a uniform grid.


Geophysics ◽  
1991 ◽  
Vol 56 (6) ◽  
pp. 812-821 ◽  
Author(s):  
J. van Trier ◽  
W. W. Symes

Seismic traveltimes can be computed efficiently on a regular grid by an upwind finite‐difference method. The method solves a conservation law that describes changes in the gradient components of the traveltime field. The traveltime field itself is easily obtained from the solution of the conservation law by numerical integration. The conservation law derives from the eikonal equation, and its solution depicts the first‐arrival‐time field. The upwind finite‐difference scheme can be implemented in fully vectorized form, in contrast to a similar scheme proposed recently by Vidale. The resulting traveltime field is useful both in Kirchhoff migration and modeling and in seismic tomography. Many reliable methods exist for the numerical solution of conservation laws, which appear in fluid mechanics as statements of the conservation of mass, momentum, etc. A first‐order upwind finite‐difference scheme proves accurate enough for seismic applications. Upwind schemes are stable because they mimic the behavior of fluid flow by using only information taken from upstream in the fluid. Other common difference schemes are unstable, or overly dissipative, at shocks (discontinuities in flow variables), which are time gradient discontinuities in our approach to solving the eikonal equation.


Geophysics ◽  
2021 ◽  
pp. 1-91
Author(s):  
Hang Wang ◽  
Liuqing Yang ◽  
Xingye Liu ◽  
Yangkang Chen ◽  
Wei Chen

The local slope estimated from seismic images has a variety of meaningful applications. Slope estimation based on the plane-wave destruction (PWD) method is one of the widely accepted techniques in the seismic community. However, the PWD method suffers from its sensitivity to noise in the seismic data. We propose an improved slope estimation method based on the PWD theory that is more robust in the presence of strong random noise. The PWD operator derived in the Z-transform domain contains a phase-shift operator in space corresponding to the calculation of the first-order derivative of the wavefield in the space domain. The first-order derivative is discretized based on a forward finite difference in the traditional PWD method, which lacks the constraint from the backward direction. We propose an improved method by discretizing the first-order space derivative based on an averaged forward-backward finite-difference calculation. The forward-backward space derivative calculation makes the space-domain first-order derivative more accurate and better anti-noise since it takes more space grids for the derivative calculation. In addition, we introduce non-stationary smoothing to regularize the slope estimation and to make it even more robust to noise. We demonstrate the performance of the new slope estimation method by several synthetic and field data examples in different applications, including 2D/3D structural filtering, structure-oriented deblending, and horizon tracking.


AIAA Journal ◽  
1964 ◽  
Vol 2 (8) ◽  
pp. 1396-1402 ◽  
Author(s):  
SEYMOUR L. ZEIBERG ◽  
GARY D. BLEICH

1989 ◽  
Vol 79 (4) ◽  
pp. 1210-1230
Author(s):  
C. R. Daudt ◽  
L. W. Braile ◽  
R. L. Nowack ◽  
C. S. Chiang

Abstract The Fourier method, the second-order finite-difference method, and a fourth-order implicit finite-difference method have been tested using analytical phase and group velocity calculations, homogeneous velocity model calculations for disperson analysis, two-dimensional layered-interface calculations, comparisons with the Cagniard-de Hoop method, and calculations for a laterally heterogeneous model. Group velocity rather than phase velocity dispersion calculations are shown to be a more useful aid in predicting the frequency-dependent travel-time errors resulting from grid dispersion, and in establishing criteria for estimating equivalent accuracy between discrete grid methods. Comparison of the Fourier method with the Cagniard-de Hoop method showed that the Fourier method produced accurate seismic traces for a planar interface model even when a relatively coarse grid calculation was used. Computations using an IBM 3083 showed that Fourier method calculations using fourth-order time derivatives can be performed using as little as one-fourth the CPU time of an equivalent second-order finite-difference calculation. The Fourier method required a factor of 20 less computer storage than the equivalent second-order finite-difference calculation. The fourth-order finite-difference method required two-thirds the CPU time and a factor of 4 less computer storage than the second-order calculation. For comparison purposes, equivalent runs were determined by allowing a group velocity error tolerance of 2.5 per cent numerical dispersion for the maximum seismic frequency in each calculation. The Fourier method was also applied to a laterally heterogeneous model consisting of random velocity variations in the lower half-space. Seismograms for the random velocity model resulted in anticipated variations in amplitude with distance, particularly for refracted phases.


Author(s):  
W. G. Schmidt ◽  
P. H. Hahn ◽  
K. Seino ◽  
M. Preuß ◽  
F. Bechstedt

Sign in / Sign up

Export Citation Format

Share Document