Finite‐difference calculation of direct‐arrival traveltimes using the eikonal equation

Geophysics ◽  
2002 ◽  
Vol 67 (4) ◽  
pp. 1270-1274 ◽  
Author(s):  
Le‐Wei Mo ◽  
Jerry M. Harris

Traveltimes of direct arrivals are obtained by solving the eikonal equation using finite differences. A uniform square grid represents both the velocity model and the traveltime table. Wavefront discontinuities across a velocity interface at postcritical incidence and some insights in direct‐arrival ray tracing are incorporated into the traveltime computation so that the procedure is stable at precritical, critical, and postcritical incidence angles. The traveltimes can be used in Kirchhoff migration, tomography, and NMO corrections that require traveltimes of direct arrivals on a uniform grid.

Geophysics ◽  
1994 ◽  
Vol 59 (5) ◽  
pp. 810-817 ◽  
Author(s):  
Samuel H. Gray ◽  
William P. May

The use of ray shooting followed by interpolation of traveltimes onto a regular grid is a popular and robust method for computing diffraction curves for Kirchhoff migration. An alternative to this method is to compute the traveltimes by directly solving the eikonal equation on a regular grid, without computing raypaths. Solving the eikonal equation on such a grid simplifies the problem of interpolating times onto the migration grid, but this method is not well defined at points where two different branches of the traveltime field meet. Also, computational and data storage issues that are relatively unimportant for performance in two dimensions limit the applicability of both schemes in three dimensions. A new implementation of a gridded eikonal equation solver has been designed to address these problems. A 2-D version of this algorithm is tested by using it to generate traveltimes to migrate the Marmousi synthetic data set using the exact velocity model. The results are compared with three other images: an F-X migration (a standard for comparison), a Kirchhoff migration using ray tracing, and a Kirchhoff migration using traveltimes generated by a commonly used eikonal equation solver. The F-X‐migrated image shows the imaging objective more clearly than any of the Kirchhoff migrations, and we advance a heuristic reason to explain this fact. Of the Kirchhoff migrations, the one using ray tracing produces the best image, and the other two are of comparable quality.


Geophysics ◽  
1991 ◽  
Vol 56 (6) ◽  
pp. 812-821 ◽  
Author(s):  
J. van Trier ◽  
W. W. Symes

Seismic traveltimes can be computed efficiently on a regular grid by an upwind finite‐difference method. The method solves a conservation law that describes changes in the gradient components of the traveltime field. The traveltime field itself is easily obtained from the solution of the conservation law by numerical integration. The conservation law derives from the eikonal equation, and its solution depicts the first‐arrival‐time field. The upwind finite‐difference scheme can be implemented in fully vectorized form, in contrast to a similar scheme proposed recently by Vidale. The resulting traveltime field is useful both in Kirchhoff migration and modeling and in seismic tomography. Many reliable methods exist for the numerical solution of conservation laws, which appear in fluid mechanics as statements of the conservation of mass, momentum, etc. A first‐order upwind finite‐difference scheme proves accurate enough for seismic applications. Upwind schemes are stable because they mimic the behavior of fluid flow by using only information taken from upstream in the fluid. Other common difference schemes are unstable, or overly dissipative, at shocks (discontinuities in flow variables), which are time gradient discontinuities in our approach to solving the eikonal equation.


1989 ◽  
Vol 79 (4) ◽  
pp. 1210-1230
Author(s):  
C. R. Daudt ◽  
L. W. Braile ◽  
R. L. Nowack ◽  
C. S. Chiang

Abstract The Fourier method, the second-order finite-difference method, and a fourth-order implicit finite-difference method have been tested using analytical phase and group velocity calculations, homogeneous velocity model calculations for disperson analysis, two-dimensional layered-interface calculations, comparisons with the Cagniard-de Hoop method, and calculations for a laterally heterogeneous model. Group velocity rather than phase velocity dispersion calculations are shown to be a more useful aid in predicting the frequency-dependent travel-time errors resulting from grid dispersion, and in establishing criteria for estimating equivalent accuracy between discrete grid methods. Comparison of the Fourier method with the Cagniard-de Hoop method showed that the Fourier method produced accurate seismic traces for a planar interface model even when a relatively coarse grid calculation was used. Computations using an IBM 3083 showed that Fourier method calculations using fourth-order time derivatives can be performed using as little as one-fourth the CPU time of an equivalent second-order finite-difference calculation. The Fourier method required a factor of 20 less computer storage than the equivalent second-order finite-difference calculation. The fourth-order finite-difference method required two-thirds the CPU time and a factor of 4 less computer storage than the second-order calculation. For comparison purposes, equivalent runs were determined by allowing a group velocity error tolerance of 2.5 per cent numerical dispersion for the maximum seismic frequency in each calculation. The Fourier method was also applied to a laterally heterogeneous model consisting of random velocity variations in the lower half-space. Seismograms for the random velocity model resulted in anticipated variations in amplitude with distance, particularly for refracted phases.


2021 ◽  
Vol 11 (3) ◽  
pp. 982
Author(s):  
Dmitry Alexandrov ◽  
Umair bin Waheed ◽  
Leo Eisner

The accuracy of computed traveltimes in a velocity model plays a crucial role in localization of microseismic events. The conventional approach usually utilizes robust fast sweeping or fast marching methods to solve the eikonal equation numerically with a finite-difference scheme. These methods introduce traveltime errors that strongly depend on the direction of wave propagation. Such error results in moveout changes of the computed traveltimes and introduces significant location bias. The issue can be addressed by using a finite-difference scheme to solve the factored eikonal equation. This equation yields significantly more accurate traveltimes and therefore reduces location error, though the traveltimes computed with the factored eikonal equation still contain small errors with systematic bias. Alternatively, the traveltimes can be computed using a physics-informed neural network solver, which yields more randomized traveltimes and resulting location errors.


Geophysics ◽  
2001 ◽  
Vol 66 (3) ◽  
pp. 883-889 ◽  
Author(s):  
Paul Sava ◽  
Sergey Fomel

Traveltime computation is widely used in seismic modeling, imaging, and velocity analysis. The two most commonly used methods are ray tracing and numerical solutions to the eikonal equation. Eikonal solvers are fast and robust but are limited to computing only the first‐arrival traveltimes. Ray tracing can compute multiple arrivals but lacks the robustness of eikonal solvers. We propose a robust and complete method of traveltime computation. It is based on a system of partial differential equations, which is equivalent to the eikonal equation but formulated in the ray‐coordinates system. We use a first‐order discretization scheme that is interpreted very simply in terms of the Huygens’s principle. Our explicit finite‐difference solution to the eikonal equation solved in the ray‐coordinates system delivers both computational speed and stability since we use more than one point on the current wavefront at every time step. The finite‐difference method has proven to be a robust alternative to conventional ray tracing, while being faster and having a better ability to handle rough velocity media and penetrate shadow zones.


Geophysics ◽  
1996 ◽  
Vol 61 (1) ◽  
pp. 253-263 ◽  
Author(s):  
Dave E. Nichols

Prestack Kirchhoff migration using first‐arrival traveltimes has been shown to produce poor images in areas of complex structure. To avoid this problem, I propose a new method for calculating traveltimes that estimates the traveltime of the maximum energy arrival, rather than the first arrival. This method estimates a traveltime that is valid in the seismic frequency band, not the usual high‐frequency approximation. Instead of solving the eikonal equation for the traveltime, I solve the Helmholtz equation to estimate the wavefield for a few frequencies. I then perform a parametric fit to the wavefield to estimate a traveltime, amplitude, and phase. The images created by using these parameters in a Kirchhoff imaging algorithm are comparable in quality to those created using full‐wavefield, finite‐difference, shot‐profile migration.


Geophysics ◽  
1990 ◽  
Vol 55 (5) ◽  
pp. 521-526 ◽  
Author(s):  
John E. Vidale

The traveltimes of first arriving seismic rays through most velocity structures can be computed rapidly on a three‐dimensional numerical grid by finite‐difference extrapolation. Head waves are properly treated and shadow zones are filled by the appropriate diffractions. Differences of less than 0.11 percent are found between the results of this technique and ray tracing for a complex but smooth model. This scheme has proven useful for earthquake location and shows promise as an inexpensive, well‐behaved substitute for ray tracing in forward‐modeling and Kirchhoff inversion applications.


Geophysics ◽  
2000 ◽  
Vol 65 (5) ◽  
pp. 1631-1640 ◽  
Author(s):  
Genmeng Chen ◽  
Janusz Peron ◽  
Luis Canales

Vertical seismic profiling‐common depth point (VSPCDP) mapping with rapid ray tracing in a horizontally layered velocity model is used to create 3-D image volumes using Blackfoot and Oseberg 3-D vertical seismic profiling (VSP) data. The ray‐tracing algorithm uses Fermat’s principle and is specially programmed for the layered model. The algorithm is about ten times faster than either a 3-D VSP-CDP mapping program with an eikonal traveltime computation method or a 3-D VSP Kirchhoff migration program. The mapping method automatically separates the image zone from the nonimage zone within the 3-D image volume. The Oseberg data example shows that the lateral extent of the image zone created by the 3D VSP-CDP mapping is larger than that created by 3-D VSP Kirchhoff migration. The same sample result also provides high‐frequency events at target zones. We include an analysis of the imaging error induced from using a horizontally layered model for the Oseberg data, indicating that the method is reliable in the presence of gently dipping structure.


1990 ◽  
Author(s):  
Fuhao Qin ◽  
Kim Bak Olsen ◽  
Yi Luo ◽  
Gerard T. Schuster

Sign in / Sign up

Export Citation Format

Share Document