Non-stationary local slope estimation via forward-backward space derivative calculation

Geophysics ◽  
2021 ◽  
pp. 1-91
Author(s):  
Hang Wang ◽  
Liuqing Yang ◽  
Xingye Liu ◽  
Yangkang Chen ◽  
Wei Chen

The local slope estimated from seismic images has a variety of meaningful applications. Slope estimation based on the plane-wave destruction (PWD) method is one of the widely accepted techniques in the seismic community. However, the PWD method suffers from its sensitivity to noise in the seismic data. We propose an improved slope estimation method based on the PWD theory that is more robust in the presence of strong random noise. The PWD operator derived in the Z-transform domain contains a phase-shift operator in space corresponding to the calculation of the first-order derivative of the wavefield in the space domain. The first-order derivative is discretized based on a forward finite difference in the traditional PWD method, which lacks the constraint from the backward direction. We propose an improved method by discretizing the first-order space derivative based on an averaged forward-backward finite-difference calculation. The forward-backward space derivative calculation makes the space-domain first-order derivative more accurate and better anti-noise since it takes more space grids for the derivative calculation. In addition, we introduce non-stationary smoothing to regularize the slope estimation and to make it even more robust to noise. We demonstrate the performance of the new slope estimation method by several synthetic and field data examples in different applications, including 2D/3D structural filtering, structure-oriented deblending, and horizon tracking.

Geophysics ◽  
2019 ◽  
Vol 84 (4) ◽  
pp. T259-T282 ◽  
Author(s):  
Shigang Xu ◽  
Yang Liu ◽  
Zhiming Ren ◽  
Hongyu Zhou

The presently available staggered-grid finite-difference (SGFD) schemes for the 3D first-order elastic-wave equation can only achieve high-order spatial accuracy, but they exhibit second-order temporal accuracy. Therefore, the commonly used SGFD methods may suffer from visible temporal dispersion and even instability when relatively large time steps are involved. To increase the temporal accuracy and stability, we have developed a novel time-space-domain high-order SGFD stencil, characterized by ([Formula: see text])th-order spatial and ([Formula: see text])th-order temporal accuracies ([Formula: see text]), to numerically solve the 3D first-order elastic-wave equation. The core idea of this new stencil is to use a double-pyramid stencil with an operator length parameter [Formula: see text] together with the conventional second-order SGFD to approximate the temporal derivatives. At the same time, the spatial derivatives are discretized by the orthogonality stencil with an operator length parameter [Formula: see text]. We derive the time-space-domain dispersion relation of this new stencil and determine finite-difference (FD) coefficients using the Taylor-series expansion. In addition, we further optimize the spatial FD coefficients by using a least-squares (LS) algorithm to minimize the time-space-domain dispersion relation. To create accurate and reasonable P-, S-, and converted wavefields, we introduce the 3D wavefield-separation technique into our temporal high-order SGFD schemes. The decoupled P- and S-wavefields are extrapolated by using the P- and S-wave dispersion-relation-based FD coefficients, respectively. Moreover, we design an adaptive variable-length operator scheme, including operators [Formula: see text] and [Formula: see text], to reduce the extra computational cost arising from adopting this new stencil. Dispersion and stability analyses indicate that our new methods have higher accuracy and better stability than the conventional ones. Using several 3D modeling examples, we demonstrate that our SGFD schemes can yield greater temporal accuracy on the premise of guaranteeing high-order spatial accuracy. Through effectively combining our new stencil, LS-based optimization, large time step, variable-length operator, and graphic processing unit, the computational efficiency can be significantly improved for the 3D case.


2018 ◽  
Vol 49 (6) ◽  
pp. 898-905 ◽  
Author(s):  
Wenquan Liang ◽  
Xiu Wu ◽  
Yanfei Wang ◽  
Jingjie Cao ◽  
Chaofan Wu ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Zamir G. Khan ◽  
Amod S. Patil ◽  
Atul A. Shirkhedkar

Four simple, rapid, accurate, precise, reliable, and economical UV-spectrophotometric methods have been proposed for the determination of tadalafil in bulk and in pharmaceutical formulation. “Method A” is first order derivative UV spectrophotometry using amplitude, “method B” is first order derivative UV spectrophotometry using area under curve technique, “method C” is second order derivative UV spectrophotometry using amplitude, and “method D” is second order derivative UV spectrophotometry using area under curve technique. The developed methods have shown best results in terms of linearity, accuracy, precision, and LOD and LOQ for bulk drug and marketed formulation as well. In N,N-dimethylformamide, tadalafil showed maximum absorbance at 284 nm. For “method A” amplitude was recorded at 297 nm while for “method B” area under curve was integrated in the wavelength range of 290.60–304.40 nm. For “method C” amplitude was measured at 284 nm while for “method D” area under curve was selected in the wavelength range of 280.80–286.20 nm. For methods A and B, tadalafil obeyed Lambert-Beer’s law in the range of 05–50 μg/mL while for “methods C and D”, tadalafil obeyed Lambert-Beer’s law in the range of 20–70 μg/mL, and-for “methods A, B, C, and D” the correlation coefficients were found to be > than 0.999.


Geophysics ◽  
2002 ◽  
Vol 67 (4) ◽  
pp. 1270-1274 ◽  
Author(s):  
Le‐Wei Mo ◽  
Jerry M. Harris

Traveltimes of direct arrivals are obtained by solving the eikonal equation using finite differences. A uniform square grid represents both the velocity model and the traveltime table. Wavefront discontinuities across a velocity interface at postcritical incidence and some insights in direct‐arrival ray tracing are incorporated into the traveltime computation so that the procedure is stable at precritical, critical, and postcritical incidence angles. The traveltimes can be used in Kirchhoff migration, tomography, and NMO corrections that require traveltimes of direct arrivals on a uniform grid.


Sign in / Sign up

Export Citation Format

Share Document