Internal Energy Sources and Sinks

Author(s):  
Hans Volland
1985 ◽  
Vol 107 (4) ◽  
pp. 855-866 ◽  
Author(s):  
S. Acharya ◽  
R. J. Goldstein

A numerical investigation has been made of two-dimensional natural convection of air in an externally heated vertical or inclined square box containing uniformly distributed internal energy sources. Results have been obtained for Rayleigh numbers (both internal and external) up to 107 and inclination angles of 30, 60, and 90 deg from the horizontal. Two distinct flow pattern systems are observed: one, when the external Rayleigh number is larger than the internal Rayleigh number and the other, when the internal Rayleigh number is considerably greater than the external Rayleigh number. The average heat flux ratio (convective heat flux/corresponding conduction heat flux) along the hot surface is observed to undergo large variations in the external Rayleigh number range associated with the transition from one flow pattern to another. The average heat flux ratio along the cold plate is found to increase with increasing external Rayleigh number and decreasing internal Rayleigh number. The local heat flux ratio along a surface attains its maximum value in the vicinity of the region where the heated (or cooled) fluid from the opposite wall or from the interior encounters the surface.


2013 ◽  
Vol 118 (9) ◽  
pp. 4716-4726 ◽  
Author(s):  
Haiyuan Yang ◽  
Lixin Wu ◽  
Hailong Liu ◽  
Yongqiang Yu

1988 ◽  
Vol 110 (2) ◽  
pp. 345-349 ◽  
Author(s):  
Jae-Heon Lee ◽  
R. J. Goldstein

An experiment was carried out to study two-dimensional laminar natural convection within an inclined square enclosure containing fluid with internal energy sources bounded by four rigid planes of constant equal temperature. Inclination angles, from the horizontal, of 0, 15, 30, and 45 deg for Rayleigh numbers from 1.0 × 104 to 1.5 × 105 were studied. At inclined angles of 0 and 15 deg, there are two extreme values of temperature and temperature gradient within the fluid, while there is only one at 30 and 45 deg. Local and average Nusselt numbers are obtained on all four walls. As the inclination angle increases, the average Nusselt number increases on the right (upper) and bottom walls, decreases on the left (lower) wall and stays almost constant on the top wall.


Sign in / Sign up

Export Citation Format

Share Document