The Role of Hormones During Seed Development

Author(s):  
Ralph S. Quatrano
Keyword(s):  
Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 705 ◽  
Author(s):  
Angel J. Matilla

The production of viable seeds is a key event in the life cycle of higher plants. Historically, abscisic acid (ABA) and gibberellin (GAs) were considered the main hormones that regulate seed formation. However, auxin has recently emerged as an essential player that modulates, in conjunction with ABA, different cellular processes involved in seed development as well as the induction, regulation and maintenance of primary dormancy (PD). This review examines and discusses the key role of auxin as a signaling molecule that coordinates seed life. The cellular machinery involved in the synthesis and transport of auxin, as well as their cellular and tissue compartmentalization, is crucial for the development of the endosperm and seed-coat. Thus, auxin is an essential compound involved in integuments development, and its transport from endosperm is regulated by AGAMOUS-LIKE62 (AGL62) whose transcript is specifically expressed in the endosperm. In addition, recent biochemical and genetic evidence supports the involvement of auxins in PD. In this process, the participation of the transcriptional regulator ABA INSENSITIVE3 (ABI3) is critical, revealing a cross-talk between auxin and ABA signaling. Future experimental aimed at advancing knowledge of the role of auxins in seed development and PD are also discussed.


1993 ◽  
Vol 3 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Jill M. Farrant ◽  
N. W. Pammenter ◽  
Patricia Berjak

AbstractDevelopment of the highly desiccation-sensitive (recalcitrant) seeds of primarily one species, Avicennia marina, is reviewed and compared with the ontogeny of desiccation-tolerant (orthodox) seeds. A. marina seeds undergo no maturation drying and remain metabolically active throughout development, which grades almost imperceptibly into germination. While PGR control of histodifferentiation is essentially similar to that characterizing desiccation-tolerant seeds, the phase of growth and reserve deposition is characterized by exceedingly high cytokinin levels which, it is proposed, promote a sink for assimilate import. While some starch accumulation does occur, the predominant reserves are soluble sugars which are readily available for the immediate onset of seedling establishment upon shedding. ABA levels are negligible in the embryo tissues during seed maturation, but increase in the pericarp, which imposes a constraint upon germination until these outer coverings are sloughed or otherwise removed. The pattern of proteins synthesized remains qualitatively similar throughout seed development in A. marina, and no LEA proteins are produced. This suggests both that seedling establishment is independent of maturation proteins and that the absence of LEAs and desiccation sensitivity might be causally related. The study on A. marina reveals that for this recalcitrant seed-type, germination per se cannot be defined: rather, it is considered as the continuation of development temporarily constrained by the pericarp ABA levels. This leads to a reexamination of the role of rehydration as key event sensu stricto, in the germination processes in desiccation-tolerant (orthodox) seeds.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 2144 ◽  
Author(s):  
De Niu ◽  
Yuehui He

Seed development is a complex process and consists of two phases: embryo morphogenesis and seed maturation. LEAFY COTYLEDON (LEC) transcription factors, first discovered in Arabidopsis thaliana several decades ago, are master regulators of seed development. Here, we first summarize molecular genetic mechanisms underlying the control of embryogenesis and seed maturation by LECs and then provide a brief review of recent findings in the role of LECs in embryonic resetting of the parental ‘memory of winter cold’ in Arabidopsis. In addition, we discuss various chromatin-based mechanisms underlying developmental silencing of LEC genes throughout the post-embryonic development to terminate the embryonic developmental program.


Plants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 333
Author(s):  
Keliang Zhang ◽  
Yin Zhang ◽  
Yusong Ji ◽  
Jeffrey L. Walck ◽  
Jun Tao

Lepidium apetalum (Brassicaceae) is an annual or biennial weed widely distributed in Asia and Europe. The outer surface of L. apetalum seeds produces a large amount of mucilage. The primary aim of this study was to explore the dormancy characteristics and to determine how mucilage develops. The role of mucilage in water absorption/dehydration, the effects of after-ripening, gibberellin acid (GA3), cold stratification and seed coat scarification on germination, the role of mucilage in germination and seedling growth during drought, and the progress of mucilage production during seed development were investigated. The results indicate that the best temperature regime for germination was 10/20 °C. After-ripening, GA3 and seed coat scarification helped to break dormancy. Light promoted germination. Seedling growth of mucilaged seeds were significantly higher than those of demucilaged seeds at −0.606 and −1.027 MPa. Anatomical changes during seed development showed that mucilage was derived from the outer layer of the outer integument cells. Our findings suggest that seeds of L. apetalum exhibited non-deep physiological dormancy. The dormancy characteristics along with mucilage production give seeds of L. apetalum a competitive advantage over other species, and thus contribute to its potential as a weed. Effective control of this weed can be achieved by deep tillage.


2019 ◽  
Vol 61 (5) ◽  
pp. 564-580 ◽  
Author(s):  
Leonardo Jo ◽  
Julie M. Pelletier ◽  
John J. Harada

Plant Biology ◽  
2008 ◽  
Vol 10 (3) ◽  
pp. 398-402 ◽  
Author(s):  
L. Gutierrez ◽  
M. Castelain ◽  
J.-L. Verdeil ◽  
G. Conejero ◽  
O. Van Wuytswinkel

Sign in / Sign up

Export Citation Format

Share Document