primary dormancy
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 15)

H-INDEX

19
(FIVE YEARS 2)

Author(s):  
Min Zhang ◽  
Jiaojun Zhu

AbstractElucidating the regulatory mechanisms of environmental factors on seed dormancy and germination will provide guidance for tree regeneration. Toward understanding the coupled effect of light and temperature on dormancy release and germination of Pinus koraiensis seeds, we set up three light conditions (L200: 200 μmol m−2 s−1, L20: 20 μmol m−2 s−1, L0: 0 μ m−2 s−1) and four storage temperatures [T-5: − 5 °C (50 days), T5: − 5 °C (50 days) + 5 °C (50 days), T25: − 5 °C(50 days) + 5 °C (50 days) + 25 °C (50 days), T15: − 5 °C (50 days) + 5 °C (50 days) + 25 °C (50 days) + 15 °C (50 days)] using imbibed seeds, then quantified phytohormones gibberellic acid (GA3) and abscisic acid (ABA) during the stratification. Germination percentage (GP), mean germination time (TM), and germination value (GV) under 25/15 °C temperature and the three light conditions were then determined. Phytohormone levels and germination performances were significantly affected by light and temperature. No consistent trend was found between the phytohormone levels and GP caused by light levels. Under the three light conditions, ABA concentrations in the embryo and endosperm decreased as storage temperature shifted from T-5 to T25 and increased from T25 to T15; GA3 decreased in nearly all four storage temperatures. GP reached 40–60% in T25 storage without light irradiance. In the three light conditions, GP and GV were higher at T5 and T25 than at T-5 and T15; so T5 and T25 are considered as optimum storage temperatures for dormancy release and germination. At optimum temperatures, light (L200, L20) significantly increased the GP and GV compared with the dark (L0). At L200 and L20, significant negative correlations between GV and the ABA concentrations and positive correlations between GV and GA/ABA in the seed embryo were found. Temperature played a more important role in primary dormancy release and germination; light was unnecessary for primary dormancy release. Light facilitated seed germination at optimum temperatures. The dormancy release and germination of P. koraiensis seeds were controlled by a decrease in ABA concentrations or an increase in GA/ABA induced by temperature variations.


2021 ◽  
pp. 1-29
Author(s):  
Jerry M. Baskin ◽  
Carol C. Baskin

Abstract This review provides a revised and expanded word-formula system of whole-seed primary dormancy classification that integrates the scheme of Nikolaeva with that of Baskin and Baskin. Notable changes include the following. (1) The number of named tiers (layers) in the classification hierarchy is increased from three to seven. (2) Formulae are provided for the known kinds of dormancy. (3) Seven subclasses of class morphological dormancy are designated: ‘dust seeds’ of mycoheterotrophs, holoparasites and autotrophs; diaspores of palms; and seeds with cryptogeal germination are new to the system. (4) Level non-deep physiological dormancy (PD) has been divided into two sublevels, each containing three types, and Type 6 is new to the system. (5) Subclass epicotyl PD with two levels, each with three types, has been added to class PD. (6) Level deep (regular) PD is divided into two types. (7) The simple and complex levels of class morphophysiological dormancy (MPD) have been expanded to 12 subclasses, 24 levels and 16 types. (8) Level non-deep simple epicotyl MPD with four types is added to the system. (9) Level deep simple regular epicotyl MPD is divided into four types. (10) Level deep simple double MPD is divided into two types. (11) Seeds with a water-impermeable seed coat in which the embryo-haustorium grows after germination (Canna) has been added to the class combinational dormancy. The hierarchical division of primary seed dormancy into many distinct categories highlights its great diversity and complexity at the whole-seed level, which can be expressed most accurately by dormancy formulae.


New Forests ◽  
2021 ◽  
Author(s):  
Shelagh A. McCartan ◽  
Jack Forster ◽  
Richard L. Jinks ◽  
Melusi P. Rampart ◽  
Christine M. Cahalan

Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1879
Author(s):  
Martina Badano Perez ◽  
Hugh J. Beckie ◽  
Gregory R. Cawthray ◽  
Danica E. Goggin ◽  
Roberto Busi

Overreliance on herbicides for weed control is conducive to the evolution of herbicide resistance. Lolium rigidum (annual ryegrass) is a species that is prone to evolve resistance to a wide range of herbicide modes of action. Rapid detection of herbicide-resistant weed populations in the field can aid farmers to optimize the use of effective herbicides for their control. The feasibility and utility of a rapid 7-d agar-based assay to reliably detect L. rigidum resistant to key pre- and post-emergence herbicides including clethodim, glyphosate, pyroxasulfone and trifluralin were investigated in three phases: correlation with traditional pot-based dose-response assays, effect of seed dormancy, and stability of herbicides in agar. Easy-to-interpret results were obtained using non-dormant seeds from susceptible and resistant populations, and resistance was detected similarly as pot-based assays. However, the test is not suitable for trifluralin because of instability in agar as measured over a 10-d period, as well as freshly-harvested seeds due to primary dormancy. This study demonstrates the utility of a portable and rapid assay that allows for on-farm testing of clethodim, glyphosate, and pyroxasulfone resistance in L. rigidum, thereby aiding the identification and implementation of effective herbicide control options.


2021 ◽  
pp. 1-18
Author(s):  
Elias Soltani ◽  
Zahra Sadat Taheripourfard ◽  
Habibollah Ghazvini ◽  
Ali Izadi- Darbandi

2021 ◽  
Vol 39 (8) ◽  
Author(s):  
Keyvan Maleki ◽  
Elias Soltani ◽  
Ali Arabhosseini ◽  
Mozhdeh Aghili Lakeh

2020 ◽  
Vol 71 (19) ◽  
pp. 5924-5934 ◽  
Author(s):  
Natalia Verónica Laspina ◽  
Diego Batlla ◽  
Roberto Luis Benech-Arnold

Abstract Polygonum aviculare seeds show high levels of primary dormancy (PD). Low winter temperatures alleviate dormancy and high spring temperatures induce seeds into secondary dormancy (SD), naturally establishing stable seedbanks cycling through years. The objective of this work was to elucidate the mechanism(s) involved in PD expression and release, and in SD induction in these seeds, and the extent to which abscisic acid (ABA) and gibberellins (GAs) are part of these mechanisms. Quantification of endogenous ABA both prior to and during incubation, and sensitivity to ABA and GAs, were assessed in seeds with contrasting dormancy. Expression analysis was performed for candidate genes involved in hormone metabolism and signaling. It was found that endogenous ABA content does not explain either dormancy release or dormancy induction; moreover, it does not seem to play a role in dormancy maintenance. However, dormancy modifications were commonly accompanied by changes in ABA sensitivity. Concomitantly, induction into SD, but not PD, was characterized by a increased PaABI-5 and PaPYL transcription, and a rise in GA sensitivity as a possible counterbalance effect. These results suggest that dormancy cycling in this species is related to changes in embryo sensitivity to ABA; however, this sensitivity appears to be controlled by different molecular mechanisms in primary and secondary dormant seeds.


Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 749
Author(s):  
Gonda Buijs

Primary seed dormancy is the phenomenon whereby seeds newly shed by the mother plant are unable to germinate under otherwise favorable conditions for germination. Primary dormancy is released during dry seed storage (after-ripening), and the seeds acquire the capacity to germinate upon imbibition under favorable conditions, i.e., they become non-dormant. Primary dormancy can also be released from the seed by various treatments, for example, by cold imbibition (stratification). Non-dormant seeds can temporarily block their germination if exposed to unfavorable conditions upon seed imbibition until favorable conditions are available. Nevertheless, prolonged unfavorable conditions will re-induce dormancy, i.e., germination will be blocked upon exposure to favorable conditions. This phenomenon is referred to as secondary dormancy. Relative to primary dormancy, the mechanisms underlying secondary dormancy remain understudied in Arabidopsis thaliana and largely unknown. This is partly due to the experimental difficulty in observing secondary dormancy in the laboratory and the absence of established experimental protocols. Here, an overview is provided of the current knowledge on secondary dormancy focusing on A. thaliana, and a working model describing secondary dormancy is proposed, focusing on the interaction of primary and secondary dormancy.


Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 705 ◽  
Author(s):  
Angel J. Matilla

The production of viable seeds is a key event in the life cycle of higher plants. Historically, abscisic acid (ABA) and gibberellin (GAs) were considered the main hormones that regulate seed formation. However, auxin has recently emerged as an essential player that modulates, in conjunction with ABA, different cellular processes involved in seed development as well as the induction, regulation and maintenance of primary dormancy (PD). This review examines and discusses the key role of auxin as a signaling molecule that coordinates seed life. The cellular machinery involved in the synthesis and transport of auxin, as well as their cellular and tissue compartmentalization, is crucial for the development of the endosperm and seed-coat. Thus, auxin is an essential compound involved in integuments development, and its transport from endosperm is regulated by AGAMOUS-LIKE62 (AGL62) whose transcript is specifically expressed in the endosperm. In addition, recent biochemical and genetic evidence supports the involvement of auxins in PD. In this process, the participation of the transcriptional regulator ABA INSENSITIVE3 (ABI3) is critical, revealing a cross-talk between auxin and ABA signaling. Future experimental aimed at advancing knowledge of the role of auxins in seed development and PD are also discussed.


2019 ◽  
Author(s):  
Yuan Song ◽  
Jiaojun Zhu

Abstract Background: Korean pine seeds have primary dormancy following dispersal, leading to poor seed germination and seedling establishment. Metabolic homeostasis determines whether the seeds are dormant or non-dormant. However, the specific metabolic pathways that maintain the primary dormancy of pine seeds are poorly understood. Results: Metabolic analysis was employed on the embryos of PDRS (seeds released from primary dormancy) and PDS (primary dormant seeds) on days 0, 5 and 11 after incubation under a germination-inductive temperature. A larger metabolic switch occurred in PDRS embryos from days 0 to 11. The contents of ninety metabolites were significantly changed from days 0 to 5, 83% of which (including most sugars, organic acids and amino acids) increased, reflecting that biosynthetic metabolism processes are initiated. The contents of ninety-two metabolites showed distinct variations from days 5 to 11, 71% of which (including most organic acids and almost all amino acids) reduced substantially. Fructose 6-phosphate, inositol-3-phosphate, 3-phosphoglyceric and D-glucose-6-phosphate contents showed the most decrease with decreasing 409-, 75-, 58- and 41-fold, indicating that the glycolysis and tricarboxylic acid (TCA) cycle strongly slowed down. The contents of the most metabolites in PDS embryos also displayed a relatively larger alteration only from days 0 to 5. Although 64% of metabolites increased from days 0 to 5, their levels were still lower compared with PDRS embryos. Furthermore, most metabolites were not further accumulated from days 5 to 11. Unlike PDRS embryos, almost all amino acids in PDS embryos did not exhibit a substantial decrease from days 5 to 11. Also, there was not a major decrease in the levels of metabolites involved mainly in glycolysis and TCA cycle, while some intermediates even increased. Conclusions: The attenuated biosynthetic metabolism processes, the lower utilization rate of amino acids and the higher operation rate of glycolysis and TCA in embryos maintain primary dormancy.


Sign in / Sign up

Export Citation Format

Share Document