Observations of Snowmelt Runoff Pathways on a Slope in a Boreal Forest Environment, Lac Laflamme, Quebec

Author(s):  
Jean Roberge ◽  
André P. Plamondon
2013 ◽  
Vol 13 (11) ◽  
pp. 29097-29136 ◽  
Author(s):  
J. Hong ◽  
S. A. K. Häkkinen ◽  
M. Paramonov ◽  
M. Äijälä ◽  
J. Hakala ◽  
...  

Abstract. The Volatility-Hygroscopicity Tandem Differential Mobility Analyzer (VH-TDMA) was applied to study the hygroscopicity and volatility properties of submicron atmospheric aerosol in a boreal forest environment in Hyytiälä, Finland during the summer of 2010. Aitken and accumulation mode particles (50 nm, 75 nm and 110 nm) were investigated. The results suggest that the particles were internally mixed at all sizes. Hygroscopicity was found to increase with size. The relative mass fraction of organics and SO42− is probably the major contributor to the fluctuation of the hygroscopicity for all particle sizes. The Cloud Condensation Nuclei counter (CCNc)-derived hygroscopicity parameter κ was slightly higher than κ calculated from VH-TDMA data under sub-saturated conditions, which can be explained by the fact that particulate organics have a different degree of dissolution in sub- and supersaturated conditions. Also, the size-resolved volatility properties of particles were investigated. Upon heating, small particles evaporated more compared to large particles. There was a significant amount of aerosol volume (non-volatile material) left even at heating temperatures above 280 °C. Using size resolved volatility-hygroscopicity analysis, we concluded that there was always hygroscopic material remaining in the particles of different sizes at all different heating temperatures, even above 280 °C. This indicates that the observed non-volatile aerosol material was not consisting solely of black carbon.


2021 ◽  
Author(s):  
Vladimir Belyaev ◽  
Ilya Shorkunov ◽  
Katerina Garankina ◽  
Nikita Mergelov ◽  
Yulia Shishkina ◽  
...  

<p>Recent detailed investigations of landforms, soils and surface deposits of the Borisoglebsk Upland northeastern slope within the Nero Lake basin (Central European Russia, Yaroslavl Region) allowed deciphering co-evolution of the major landscape components of the case study area since the Late Pleistocene. The Late Pleistocene to Holocene transition in the gully network was represented by relatively short but high-magnitude (up to 12 m) incision phase followed by significant infill till 6.5 ka. Absence of the well-developed early Holocene paleosols in the studied sections and cores suggests dominantly negative sediment budget. There is so far limited evidence of sedimentation over the first half of the Holocene. Discontinuous deposition with certain interruptions (but without distinct buried soil formation) occurred only within closed depressions and on gully fans. The second part of the Holocene prior to the widespread human settlement left more substantial traces in soil and sediment record. Despite the common perception of the pristine boreal forest landscapes to be geomorphologically stable due to erosion-protective role of woodland vegetation, several phases of dramatically increased soil and gully erosion rates have been identified. It is identified in soil bodies and sediments, both at locations dominated by denudation (evidences of multiple topsoil truncation in Atlantic and Subatlantic) and at zones of alternating incision and infill of small linear erosion features. Such extremes were most likely associated with combination of several triggers including natural forest fires and high-magnitude rainfall or snowmelt runoff events. There are several <sup>14</sup>C dated layers of pyrogenic charcoal indicating pre-anthropogenic wildfire-induced incision and infill cycles during the middle and late Holocene.</p><p>The last phases of increased hillslope and fluvial activity within the study area can be related to increased human interference, starting from about 1600-900 years ago. The onset of cut-and-burn cultivation is independently established from available archeological evidences, dating of cut and burnt tree logs remnants, organic material buried by agrogenic colluvium and gully fans. Latest period of intensive gully growth can most likely be attributed to the XIX<sup>th</sup> Century land tenure reform, when most of the study area gullies experienced significant linear growth, bottom incisions and appearance of several new gully branches. The most recent trend of soil and gully erosion has been evaluated by <sup>137</sup>Cs sediment tracing, soil empirical modeling and comparison of historical and modern maps, airborne photos and satellite images. Rates of soil redistribution on slopes decreased significantly over the last several decades due to combination of natural and anthropogenic impacts: 1) decreased spring snowmelt runoff caused mainly by generally lowered thickness of seasonally frozen topsoil layer; 2) arable land abandonment or shift from row crops and cereals to perennial grass-dominated crop rotations in the post-Soviet period. In addition, local short-term (from several years to within-year) cycles of relatively low-magnitude (not exceeding ±1 m range) incision and infill in gullies are often triggered by biogenic activities, namely beaver dam constructions and breaches and local log jams.</p><p>The study is supported by the Russian Science Foundation (Project No. 19-77-10061) and Russian Foundation for Basic Research (Project No. 19-29-05238).</p>


2015 ◽  
Vol 15 (2) ◽  
pp. 799-813 ◽  
Author(s):  
R. Oswald ◽  
M. Ermel ◽  
K. Hens ◽  
A. Novelli ◽  
H. G. Ouwersloot ◽  
...  

Abstract. Atmospheric concentrations of nitrous acid (HONO), one of the major precursors of the hydroxyl radical (OH) in the troposphere, significantly exceed the values predicted by the assumption of a photostationary state (PSS) during daytime. Therefore, additional sources of HONO were intensively investigated in the last decades. This study presents budget calculations of HONO based on simultaneous measurements of all relevant species, including HONO and OH at two different measurement heights, i.e. 1 m above the ground and about 2 to 3 m above the canopy (24 m above the ground), conducted in a boreal forest environment. We observed mean HONO concentrations of about 6.5 × 108 molecules cm−3 (26 ppt) during daytime, more than 20 times higher than expected from the PSS of 0.2 × 108 molecules cm−3 (1 ppt). To close the budgets at both heights, a strong additional source term during daytime is required. This unidentified source is at its maximum at noon (up to 1.1 × 106 molecules cm−3 s−1, 160 ppt h−1) and in general up to 2.3 times stronger above the canopy than close to the ground. The insignificance of known gas phase reactions and other processes like dry deposition or advection compared to the photolytic decomposition of HONO at this measurement site was an ideal prerequisite to study possible correlations of this unknown term to proposed HONO sources. But neither the proposed emissions from soils nor the proposed photolysis of adsorbed HNO3 contributed substantially to the unknown source. However, the unknown source was found to be perfectly correlated to the unbalanced photolytic loss of HONO.


2005 ◽  
Vol 5 (10) ◽  
pp. 2761-2770 ◽  
Author(s):  
I. Kourtchev ◽  
T. Ruuskanen ◽  
W. Maenhaut ◽  
M. Kulmala ◽  
M. Claeys

Abstract. Oxidation products of isoprene including 2-methyltetrols (2-methylthreitol and 2-methylerythritol), 2-methylglyceric acid and triol derivatives of isoprene (2-methyl-1,3,4-trihydroxy-1-butene (cis and trans) and 3-methyl-2,3,4-trihydroxy-1-butene) have been detected in boreal forest PM1 aerosols collected at Hyytiälä, southern Finland, during a 2004 summer period, at significant atmospheric concentrations (in total 51 ng m−3 in summer versus 0.46 ng m−3 in fall). On the basis of these results, it can be concluded that photo-oxidation of isoprene is an important atmospheric chemistry process that contributes to secondary organic aerosol formation during summer in this conifer forest ecosystem. In addition to isoprene oxidation products, malic acid, which can be regarded as an intermediate in the oxidation of unsaturated fatty acids, was also detected at high concentrations during the summer period (46 ng m−3 in summer versus 5.2 ng m−3 in fall), while levoglucosan, originating from biomass burning, became relatively more important during the fall period (29 ng m−3 in fall versus 10 ng m−3 in summer). Pinic acid, a major photo-oxidation product of α-pinene in laboratory experiments, could only be detected at trace levels in the summer samples, suggesting that further oxidation of pinic acid occurs and/or that different oxidation pathways are followed. We hypothesize that photo-oxidation of isoprene may participate in the early stages of new particle formation, a phenomenon which has been well documented in the boreal forest environment.


2015 ◽  
Vol 15 (11) ◽  
pp. 15511-15541
Author(s):  
J. Hong ◽  
J. Kim ◽  
T. Nieminen ◽  
J. Duplissy ◽  
M. Ehn ◽  
...  

Abstract. Measurements of the hygroscopicity of 15–145 nm particles in a boreal forest environment were conducted using two Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) systems during the Pan-European Gas-AeroSOIs-climate interaction Study (PEGASOS) campaign in spring 2013. Measurements of the chemical composition of non-size segregated particles were also performed using a High-Resolution Aerosol Mass Spectrometer (HR-AMS) in parallel with hygroscopicity measurements. On average, the hygroscopic growth factor (HGF) of particles was observed to increase from the morning until afternoon. In case of accumulation mode particles, the main reasons for this behavior were increases in the ratio of sulfate to organic matter and oxidation level (O : C ratio) of the organic matter in the particle phase. Using an O : C dependent hygroscopic growth factor of organic matter (HGForg), fitted using the inverse Zdanovskii–Stokes–Robinson (ZSR) mixing rule, clearly improved the agreement between measured HGF and that predicted based on HR-AMS composition data. Besides organic oxidation level, the influence of inorganic species was tested when using the ZSR mixing rule to estimate the hygroscopic growth factor of organics in the aerosols. While accumulation and Aitken mode particles were predicted fairly well by the bulk aerosol composition data, the hygroscopicity of nucleation mode particles showed little correlation. However, we observed them to be more sensitive to the gas phase concentration of condensable vapors: the more there was sulfuric acid in the gas phase, the more hygroscopic the nucleation mode particles were. No clear dependence was found between the extremely low-volatility organics (ELVOCs) concentration and the HGF of particles of any size.


2014 ◽  
Vol 14 (6) ◽  
pp. 7823-7857 ◽  
Author(s):  
R. Oswald ◽  
M. Ermel ◽  
K. Hens ◽  
A. Novelli ◽  
H. G. Ouwersloot ◽  
...  

Abstract. Atmospheric concentrations of nitrous acid (HONO), one of the major precursors of the hydroxyl radical (OH) in the troposphere, normally exceed by far the values predicted by the assumption of a photostationary state (PSS) during daytime. Therefore, additional sources of HONO were intensively investigated in the last decades. Here, we present budget calculations of HONO based on simultaneous measurements of all relevant species including HONO and OH at two different measurement heights, i.e. 1 m above ground and about 2 to 3 m above canopy (24 m above ground), conducted in boreal forest environment. We observed mean HONO concentrations during daytime of about 6.5 × 108 molecules cm−3 (26 ppt), more than twenty times higher than expected from the PSS, 0.2 × 108 molecules cm−3 (1 ppt). To close the budgets in both heights a strong additional source term during daytime is required. This unidentified source is maximal at noon (up to 1.1 × 106 molecules cm−3 s−1, 160 ppt h−1) and in general up to 2.3 times stronger above the canopy than close to the ground. The insignificance of known gas phase reactions and also other processes like dry deposition or advection compared to the photolytic decomposition of HONO at this measurement site was an ideal prerequisite to study possible correlations of this unknown term to proposed HONO sources. But neither the proposed emissions from soils nor the proposed photolysis of adsorbed HNO3 contributed substantially to the unknown source. However, the unknown source was found to be perfectly correlated to the unbalanced photolytic loss of HONO.


Sign in / Sign up

Export Citation Format

Share Document