T-cell Subsets in Multiple Sclerosis

Author(s):  
M. A. Bach ◽  
E. Tournier-Lasserve
1999 ◽  
Vol 45 (2) ◽  
pp. 247-250 ◽  
Author(s):  
Burkhard Becher ◽  
Paul S. Giacomini ◽  
Daniel Pelletier ◽  
Ellie McCrea ◽  
Alexandre Prat ◽  
...  

2020 ◽  
Vol 117 (35) ◽  
pp. 21546-21556 ◽  
Author(s):  
Lisa Ann Gerdes ◽  
Claudia Janoschka ◽  
Maria Eveslage ◽  
Bianca Mannig ◽  
Timo Wirth ◽  
...  

The tremendous heterogeneity of the human population presents a major obstacle in understanding how autoimmune diseases like multiple sclerosis (MS) contribute to variations in human peripheral immune signatures. To minimize heterogeneity, we made use of a unique cohort of 43 monozygotic twin pairs clinically discordant for MS and searched for disease-related peripheral immune signatures in a systems biology approach covering a broad range of adaptive and innate immune populations on the protein level. Despite disease discordance, the immune signatures of MS-affected and unaffected cotwins were remarkably similar. Twinship alone contributed 56% of the immune variation, whereas MS explained 1 to 2% of the immune variance. Notably, distinct traits in CD4+effector T cell subsets emerged when we focused on a subgroup of twins with signs of subclinical, prodromal MS in the clinically healthy cotwin. Some of these early-disease immune traits were confirmed in a second independent cohort of untreated early relapsing-remitting MS patients. Early involvement of effector T cell subsets thus points to a key role of T cells in MS disease initiation.


Cells ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 634 ◽  
Author(s):  
Sophie Buhelt ◽  
Helle Bach Søndergaard ◽  
Annette Oturai ◽  
Henrik Ullum ◽  
Marina Rode von Essen ◽  
...  

Single nucleotide polymorphisms (SNPs) in or near the IL2RA gene, that encodes the interleukin-2 (IL-2) receptor α (CD25), are associated with increased risk of immune-mediated diseases including multiple sclerosis (MS). We investigated how the MS-associated IL2RA SNPs rs2104286 and rs11256593 are associated with CD25 expression on T cells ex vivo by multiparameter flow cytometry in paired genotype-selected healthy controls. We observed that MS-associated IL2RA SNPs rs2104286 and rs11256593 are associated with expression of CD25 in CD4+ but not CD8+ T cells. In CD4+ T cells, carriers of the risk genotype had a reduced frequency of CD25+ TFH1 cells (p = 0.001) and an increased frequency of CD25+ recent thymic emigrant cells (p = 0.006). Furthermore, carriers of the risk genotype had a reduced surface expression of CD25 in post-thymic expanded CD4+ T cells (CD31−CD45RA+), CD39+ TReg cells and in several non-follicular memory subsets. Our study found novel associations of MS-associated IL2RA SNPs on expression of CD25 in CD4+ T cell subsets. Insight into the associations of MS-associated IL2RA SNPs, as these new findings provide, offers a better understanding of CD25 variation in the immune system and can lead to new insights into how MS-associated SNPs contribute to development of MS.


1984 ◽  
Vol 5 (1) ◽  
pp. 45-50 ◽  
Author(s):  
M. Zaffaroni ◽  
D. Caputo ◽  
A. Ghezzi ◽  
S. Marforio ◽  
C. L. Cazzullo

1982 ◽  
Vol 11 (5) ◽  
pp. 463-468 ◽  
Author(s):  
Stephen L. Hauser ◽  
Michael J. Bresnan ◽  
Ellis L. Reinherz ◽  
Howard L. Weiner

Neurology ◽  
1983 ◽  
Vol 33 (5) ◽  
pp. 575-575 ◽  
Author(s):  
S. L. Hauser ◽  
E. L. Reinherz ◽  
C. J. Hoban ◽  
S. F. Schlossman ◽  
H. L. Weiner

2011 ◽  
Vol 18 (6) ◽  
pp. 788-798 ◽  
Author(s):  
M Chiarini ◽  
F Serana ◽  
C Zanotti ◽  
R Capra ◽  
S Rasia ◽  
...  

Background: Interferon-beta is used to reduce disease activity in multiple sclerosis, but its action is incompletely understood, individual treatment response varies among patients, and biological markers predicting clinical benefits have yet to be identified. Since it is known that multiple sclerosis patients have a deficit of the regulatory T-cell subsets, we investigated whether interferon-beta therapy induced modifications of the two main categories of regulatory T cells (Tregs), natural and IL-10-secreting inducible Tr1 subset, in patients who are biologically responsive to the therapy. Methods: T-cell phenotype was determined by flow cytometry, while real-time PCR was used to evaluate interferon-beta bioactivity through MxA determination, and to measure the RNA for IL-10 and CD46 molecule in peripheral blood mononuclear cells stimulated with anti-CD46 and anti-CD3 monoclonal antibodies, which are known to expand a Tr1-like population. Results: Interferon-beta induced a redistribution of natural Treg subsets with a shift of naive Tregs towards the ‘central memory-like’ Treg population that expresses the CCR7 molecule required for the in vivo suppressive activity. Furthermore, in a subgroup of treated patients, the CD46/CD3 co-stimulation, probably through the Tr1-like subset modulation, increased the production of RNA for IL-10 and CD46. The same group showed a lower median EDSS score after two years of therapy. Conclusions: The selective increase of ‘central memory-like’ subset and the involvement of the Tr1-like population may be two of the mechanisms by which interferon-beta achieves its beneficial effects. The quantification of RNA for IL-10 and CD46 could be used to identify patients with a different response to interferon-beta therapy.


Sign in / Sign up

Export Citation Format

Share Document