scholarly journals Relationship between Multiple Sclerosis-Associated IL2RA Risk Allele Variants and Circulating T Cell Phenotypes in Healthy Genotype-Selected Controls

Cells ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 634 ◽  
Author(s):  
Sophie Buhelt ◽  
Helle Bach Søndergaard ◽  
Annette Oturai ◽  
Henrik Ullum ◽  
Marina Rode von Essen ◽  
...  

Single nucleotide polymorphisms (SNPs) in or near the IL2RA gene, that encodes the interleukin-2 (IL-2) receptor α (CD25), are associated with increased risk of immune-mediated diseases including multiple sclerosis (MS). We investigated how the MS-associated IL2RA SNPs rs2104286 and rs11256593 are associated with CD25 expression on T cells ex vivo by multiparameter flow cytometry in paired genotype-selected healthy controls. We observed that MS-associated IL2RA SNPs rs2104286 and rs11256593 are associated with expression of CD25 in CD4+ but not CD8+ T cells. In CD4+ T cells, carriers of the risk genotype had a reduced frequency of CD25+ TFH1 cells (p = 0.001) and an increased frequency of CD25+ recent thymic emigrant cells (p = 0.006). Furthermore, carriers of the risk genotype had a reduced surface expression of CD25 in post-thymic expanded CD4+ T cells (CD31−CD45RA+), CD39+ TReg cells and in several non-follicular memory subsets. Our study found novel associations of MS-associated IL2RA SNPs on expression of CD25 in CD4+ T cell subsets. Insight into the associations of MS-associated IL2RA SNPs, as these new findings provide, offers a better understanding of CD25 variation in the immune system and can lead to new insights into how MS-associated SNPs contribute to development of MS.

Blood ◽  
2000 ◽  
Vol 96 (1) ◽  
pp. 195-202 ◽  
Author(s):  
Masaki Tateyama ◽  
Naoki Oyaizu ◽  
Thomas W. McCloskey ◽  
Soe Than ◽  
Savita Pahwa

CD4 molecules serve as coreceptors for the T-cell receptor (TCR)/CD3 complex that are engaged coordinately with TCR and facilitate antigen-specific T-cell activation leading to interleukin 2 (IL-2) production and proliferation. However, cross-ligation of CD4 molecules prior to TCR stimulation has been shown to prime CD4 T cells to undergo apoptosis. Although in vivo and in vitro experiments have implicated the involvement of Fas/FasL interaction in this CD4 cross-linking (CD4XL)-induced apoptosis, detailed mechanisms to account for cell death induction have not been elucidated. In the present study, we demonstrate that CD4XL in purified T cells not only led to Fas up-regulation but also primed CD4 T cells to express FasL upon CD3 stimulation and rendered the T cells susceptible to Fas-mediated apoptosis. Notably, in addition to CD4+ T cells, CD4XL-induced sensitization for apoptosis was observed in CD8+ T cells as well and was associated with Bcl-x down-modulation. Both CD4 and CD8 T-cell subsets underwent apoptosis following cell–cell contact with FasL+ CD4 T cells. CD28 costimulation abrogated CD4XL/CD3-induced apoptosis with restoration of IL-2 production and prevented Bcl-x down-modulation. As CD4 molecules are the primary receptors for human immunodeficiency virus 1 (HIV-1), we conclude that HIV-1 envelope mediated CD4XL can lead to the generation of FasL-expressing CD4+ T cells that can lead to apoptosis of CD4 as well as CD8 T cells. These findings implicate a novel mechanism for CD8 T-cell depletion in HIV disease.


Author(s):  
Parya Basimi ◽  
Firouzeh Akbari Asbagh ◽  
Mir Saeed Yekaninejad ◽  
Mojgan Asadi ◽  
Ali Dabbagh ◽  
...  

Thyroid autoimmunity, being recognized by the presence of auto-antibodies against thyroid peroxidase (TPO) and thyroglobulin, has known to be associated with increased risk of recurrent spontaneous abortion (RSA), even in euthyroid subjects. There was no robust evidence regarding T cell deviations in anti-TPO positive RSA patients. The aim of this study was to investigate if the numbers of different CD4+T  subsets were different in women who experienced RSA and have an anti-TPO antibody from those without autoantibody and normal fertile women or not. In this study, peripheral blood samples were obtained from three groups of women (age: 20-35 years) including RSA anti-TPO positive (n=17), RSA anti-TPO negative (n=27), and fertile (n=29) groups. The frequency of T helper (Th) 1, Th2, Th17, and regulatory T cells (Tregs) and also, the proportions of Th1/Th2 and Th17/Treg were measured by flow cytometry and compared between groups in different menstrual phases. The findings indicated elevated levels of Th1 in anti-TPO+ RSA in comparison with those without anti-TPO (p-value: 0.004), exclusively in the luteal phase. Other T cell subsets were different only between RSA and control groups. Also, the Th1/Th2 and Th17/Treg ratios were increased in both RSA groups compared to fertile women. The only subset of CD4+ T cell different between RSA groups (i.e. with and without anti-TPO) was Th1 cells. Other CD4+ T cells’ deviations including Th2, Th17, and Treg cells could be related to the presence of abortion, regardless of the underlying thyroid autoimmunity state.


2008 ◽  
Vol 205 (8) ◽  
pp. 1763-1773 ◽  
Author(s):  
Jan D. Lünemann ◽  
Ilijas Jelčić ◽  
Susanne Roberts ◽  
Andreas Lutterotti ◽  
Björn Tackenberg ◽  
...  

Symptomatic primary Epstein-Barr virus (EBV) infection and elevated humoral immune responses to EBV are associated with an increased risk of developing multiple sclerosis (MS). We explored mechanisms leading to this change in EBV-specific immunity in untreated patients with MS and healthy virus carriers matched for MS-associated HLA alleles. MS patients showed selective increase of T cell responses to the EBV nuclear antigen 1 (EBNA1), the most consistently recognized EBV-derived CD4+ T cell antigen in healthy virus carriers, but not to other EBV-encoded proteins. In contrast, influenza and human cytomegalovirus–specific immune control was unchanged in MS. The enhanced response to EBNA1 was mediated by an expanded reservoir of EBNA1-specific central memory CD4+ T helper 1 (Th1) precursors and Th1 (but not Th17) polarized effector memory cells. In addition, EBNA1-specific T cells recognized myelin antigens more frequently than other autoantigens that are not associated with MS. Myelin cross-reactive T cells produced IFN-γ, but differed from EBNA1-monospecific cells in their capability to produce interleukin-2, indicative of a polyfunctional phenotype as found in controlled chronic viral infections. Our data support the concept that clonally expanded EBNA1-specific CD4+ T cells potentially contribute to the development of MS by cross-recognition of myelin antigens.


Blood ◽  
2000 ◽  
Vol 96 (1) ◽  
pp. 195-202 ◽  
Author(s):  
Masaki Tateyama ◽  
Naoki Oyaizu ◽  
Thomas W. McCloskey ◽  
Soe Than ◽  
Savita Pahwa

Abstract CD4 molecules serve as coreceptors for the T-cell receptor (TCR)/CD3 complex that are engaged coordinately with TCR and facilitate antigen-specific T-cell activation leading to interleukin 2 (IL-2) production and proliferation. However, cross-ligation of CD4 molecules prior to TCR stimulation has been shown to prime CD4 T cells to undergo apoptosis. Although in vivo and in vitro experiments have implicated the involvement of Fas/FasL interaction in this CD4 cross-linking (CD4XL)-induced apoptosis, detailed mechanisms to account for cell death induction have not been elucidated. In the present study, we demonstrate that CD4XL in purified T cells not only led to Fas up-regulation but also primed CD4 T cells to express FasL upon CD3 stimulation and rendered the T cells susceptible to Fas-mediated apoptosis. Notably, in addition to CD4+ T cells, CD4XL-induced sensitization for apoptosis was observed in CD8+ T cells as well and was associated with Bcl-x down-modulation. Both CD4 and CD8 T-cell subsets underwent apoptosis following cell–cell contact with FasL+ CD4 T cells. CD28 costimulation abrogated CD4XL/CD3-induced apoptosis with restoration of IL-2 production and prevented Bcl-x down-modulation. As CD4 molecules are the primary receptors for human immunodeficiency virus 1 (HIV-1), we conclude that HIV-1 envelope mediated CD4XL can lead to the generation of FasL-expressing CD4+ T cells that can lead to apoptosis of CD4 as well as CD8 T cells. These findings implicate a novel mechanism for CD8 T-cell depletion in HIV disease.


Blood ◽  
2008 ◽  
Vol 112 (6) ◽  
pp. 2381-2389 ◽  
Author(s):  
Emmanuelle Fourmentraux-Neves ◽  
Abdelali Jalil ◽  
Sylvie Da Rocha ◽  
Christophe Pichon ◽  
Salem Chouaib ◽  
...  

Abstract Inhibitory killer Ig–like receptors (KIR), expressed by human natural killer cells and effector memory CD8+ T-cell subsets, bind HLA-C molecules and suppress cell activation through recruitment of the Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP-1). To further analyze the still largely unclear role of inhibitory KIR receptors on CD4+ T cells, KIR2DL1 transfectants were obtained from a CD4+ T-cell line and primary cells. Transfection of CD4+ T cells with KIR2DL1 dramatically increased the T-cell receptor (TCR)–induced production of interleukin-2 independently of ligand binding but inhibited TCR-induced activation after ligation. KIR-mediated costimulation of TCR activation involves intact KIR2DL1-ITIM phosphorylation, SHP-2 recruitment, and PKC-θ phosphorylation. Synapses leading to activation were characterized by an increase in the recruitment of p-Tyr, SHP-2, and p-PKC-θ, but not of SHP-1. Interaction of KIR2DL1 with its ligand led to a strong synaptic accumulation of KIR2DL1 and the recruitment of SHP-1/2, inhibiting TCR-induced interleukin-2 production. KIR2DL1 may induce 2 opposite signaling outputs in CD4+ T cells, depending on whether the KIR receptor is bound to its ligand. These data highlight unexpected aspects of the regulation of T cells by KIR2DL1 receptors, the therapeutic manipulation of which is currently being evaluated.


Blood ◽  
1997 ◽  
Vol 89 (7) ◽  
pp. 2529-2536 ◽  
Author(s):  
Mark L. Saxton ◽  
Dan L. Longo ◽  
Holly E. Wetzel ◽  
Henry Tribble ◽  
W. Gregory Alvord ◽  
...  

Abstract The infusion of anti-CD3–activated murine T cells plus interleukin-2 (IL-2) exerts antitumor effects against several tumors in murine immunotherapy models. This study compares the therapeutic efficacy of anti-CD3–activated CD4+ or CD8+ T-cell subsets, when given with cyclophosphamide (Cy) and liposome-encapsulated IL-2 (L-IL2) in a murine model. C57BL/6 mice bearing subcutaneous (SC) MC-38 colon adenocarcinoma, 3LL Lewis lung carcinoma, or 38C13 lymphoma for 7 to 14 days were pretreated with low-dose intraperitoneal (IP) Cy before intravenous (IV) injection of anti-CD3–activated T cells or T-cell subsets. Cell administration was followed by IP administration of L-IL2 for 5 days. Mice receiving activated CD4+ T cells showed significantly reduced tumor growth or complete remissions with prolonged disease-free survival in MC-38, 3LL, and 38C13. The timing of Cy doses in relation to adoptive transfer was critical in obtaining the optimal antitumor effect by CD4+ cells. Injecting Cy 4 days before the infusion of CD4+ cells greatly enhanced the antitumor effect of the CD4+ cells and improved survival of the mice compared with other Cy regimens. C57BL/6 mice cured of MC-38 after treatment with CD4+ T cells developed tumor-type immunologic memory as demonstrated by their ability to reject rechallenges with MC-38, but not 3LL. Similarly, mice cured of 3LL tumors rejected rechallenges of 3LL, but not MC-38. The immunologic memory could be transferred with an IV injection of splenocytes from mice cured of MC-38 or 3LL. No cytotoxic T-lymphocyte activity was detected in T cells or T-cell subsets from mice cured of MC-38 or 3LL. Increased IL-2 and interferon-γ (IFN-γ) production was observed from CD4+ subsets in cured animals when stimulated in vitro with the original tumor, but not with an unrelated syngeneic tumor. These results suggest that tumor-specific immunity can be achieved in vivo with anti-CD3–stimulated CD4+ T cells in this cellular therapy model.


2021 ◽  
Vol 9 (4) ◽  
pp. e002051
Author(s):  
Ryan Michael Reyes ◽  
Yilun Deng ◽  
Deyi Zhang ◽  
Niannian Ji ◽  
Neelam Mukherjee ◽  
...  

BackgroundAnti-programmed death-ligand 1 (αPD-L1) immunotherapy is approved to treat bladder cancer (BC) but is effective in <30% of patients. Interleukin (IL)-2/αIL-2 complexes (IL-2c) that preferentially target IL-2 receptor β (CD122) augment CD8+ antitumor T cells known to improve αPD-L1 efficacy. We hypothesized that the tumor microenvironment, including local immune cells in primary versus metastatic BC, differentially affects immunotherapy responses and that IL-2c effects could differ from, and thus complement αPD-L1.MethodsWe studied mechanisms of IL-2c and αPD-L1 efficacy using PD-L1+ mouse BC cell lines MB49 and MBT-2 in orthotopic (bladder) and metastatic (lung) sites.ResultsIL-2c reduced orthotopic tumor burden and extended survival in MB49 and MBT-2 BC models, similar to αPD-L1. Using antibody-mediated cell depletions and genetically T cell-deficient mice, we unexpectedly found that CD8+ T cells were not necessary for IL-2c efficacy against tumors in bladder, whereas γδ T cells, not reported to contribute to αPD-L1 efficacy, were indispensable for IL-2c efficacy there. αPD-L1 responsiveness in bladder required conventional T cells as expected, but not γδ T cells, altogether defining distinct mechanisms for IL-2c and αPD-L1 efficacy. γδ T cells did not improve IL-2c treatment of subcutaneously challenged BC or orthotopic (peritoneal) ovarian cancer, consistent with tissue-specific and/or tumor-specific γδ T cell contributions to IL-2c efficacy. IL-2c significantly altered bladder intratumoral γδ T cell content, activation status, and specific γδ T cell subsets with antitumor or protumor effector functions. Neither IL-2c nor αPD-L1 alone treated lung metastatic MB49 or MBT-2 BC, but their combination improved survival in both models. Combination treatment efficacy in lungs required CD8+ T cells but not γδ T cells.ConclusionsMechanistic insights into differential IL-2c and αPD-L1 treatment and tissue-dependent effects could help develop rational combination treatment strategies to improve treatment efficacy in distinct cancers. These studies also provide insights into γδ T cell contributions to immunotherapy in bladder and engagement of adaptive immunity by IL-2c plus αPD-L1 to treat refractory lung metastases.


1991 ◽  
Vol 82 (3) ◽  
pp. 257-261 ◽  
Author(s):  
Yoshihiko Nakamura ◽  
Takashi Nishimura ◽  
Yutaka Tokuda ◽  
Nobumasa Kobayashi ◽  
Katsuto Watanabe ◽  
...  

2015 ◽  
Vol 213 (1) ◽  
pp. 123-138 ◽  
Author(s):  
Arata Takeuchi ◽  
Mohamed El Sherif Gadelhaq Badr ◽  
Kosuke Miyauchi ◽  
Chitose Ishihara ◽  
Reiko Onishi ◽  
...  

Naive T cells differentiate into various effector T cells, including CD4+ helper T cell subsets and CD8+ cytotoxic T cells (CTL). Although cytotoxic CD4+ T cells (CD4+CTL) also develop from naive T cells, the mechanism of development is elusive. We found that a small fraction of CD4+ T cells that express class I–restricted T cell–associated molecule (CRTAM) upon activation possesses the characteristics of both CD4+ and CD8+ T cells. CRTAM+ CD4+ T cells secrete IFN-γ, express CTL-related genes, such as eomesodermin (Eomes), Granzyme B, and perforin, after cultivation, and exhibit cytotoxic function, suggesting that CRTAM+ T cells are the precursor of CD4+CTL. Indeed, ectopic expression of CRTAM in T cells induced the production of IFN-γ, expression of CTL-related genes, and cytotoxic activity. The induction of CD4+CTL and IFN-γ production requires CRTAM-mediated intracellular signaling. CRTAM+ T cells traffic to mucosal tissues and inflammatory sites and developed into CD4+CTL, which are involved in mediating protection against infection as well as inducing inflammatory response, depending on the circumstances, through IFN-γ secretion and cytotoxic activity. These results reveal that CRTAM is critical to instruct the differentiation of CD4+CTL through the induction of Eomes and CTL-related gene.


2012 ◽  
Vol 209 (12) ◽  
pp. 2263-2276 ◽  
Author(s):  
Tom M. McCaughtry ◽  
Ruth Etzensperger ◽  
Amala Alag ◽  
Xuguang Tai ◽  
Sema Kurtulus ◽  
...  

The thymus generates T cells with diverse specificities and functions. To assess the contribution of cytokine receptors to the differentiation of T cell subsets in the thymus, we constructed conditional knockout mice in which IL-7Rα or common cytokine receptor γ chain (γc) genes were deleted in thymocytes just before positive selection. We found that γc expression was required to signal the differentiation of MHC class I (MHC-I)–specific thymocytes into CD8+ cytotoxic lineage T cells and into invariant natural killer T cells but did not signal the differentiation of MHC class II (MHC-II)–specific thymocytes into CD4+ T cells, even into regulatory Foxp3+CD4+ T cells which require γc signals for survival. Importantly, IL-7 and IL-15 were identified as the cytokines responsible for CD8+ cytotoxic T cell lineage specification in vivo. Additionally, we found that small numbers of aberrant CD8+ T cells expressing Runx3d could arise without γc signaling, but these cells were developmentally arrested before expressing cytotoxic lineage genes. Thus, γc-transduced cytokine signals are required for cytotoxic lineage specification in the thymus and for inducing the differentiation of MHC-I–selected thymocytes into functionally mature T cells.


Sign in / Sign up

Export Citation Format

Share Document