The Future of Dwarf Galaxy Research: What Simulations will Predict?

2018 ◽  
Vol 14 (S344) ◽  
pp. 17-26
Author(s):  
Laura V. Sales

AbstractWe present a summary of the predictions from numerical simulations to our understanding of dwarf galaxies. It centers the discussion around the Λ Cold Dark Matter scenario (ΛCDM) but discusses also implications for alternative dark matter models. Four key predictions are identified: the abundance of dwarf galaxies, their dark matter content, their relation with environment and the existence of dwarf satellites orbiting dwarf field galaxies. We discuss tensions with observations and identify the most exciting predictions expected from simulations in the future, including i) the existence of “dark galaxies” (dark matter halos without stars), ii) the ability to resolve the structure (size, morphology, dark matter distribution) in dwarfs and iii) the number of ultra-faint satellites around dwarf galaxies. All of these predictions shall inform future observations, not only the faintest galaxies to be discovered within the Local Volume but also distant dwarfs driving galaxy formation in the early universe.

2020 ◽  
Vol 499 (2) ◽  
pp. 2648-2661
Author(s):  
Aaron A Dutton ◽  
Tobias Buck ◽  
Andrea V Macciò ◽  
Keri L Dixon ◽  
Marvin Blank ◽  
...  

ABSTRACT We use cosmological hydrodynamical galaxy formation simulations from the NIHAO project to investigate the response of cold dark matter (CDM) haloes to baryonic processes. Previous work has shown that the halo response is primarily a function of the ratio between galaxy stellar mass and total virial mass, and the density threshold above which gas is eligible to form stars, n[cm−3]. At low n all simulations in the literature agree that dwarf galaxy haloes are cuspy, but at high n ≳ 100 there is no consensus. We trace halo contraction in dwarf galaxies with n ≳ 100 reported in some previous simulations to insufficient spatial resolution. Provided the adopted star formation threshold is appropriate for the resolution of the simulation, we show that the halo response is remarkably stable for n ≳ 5, up to the highest star formation threshold that we test, n = 500. This free parameter can be calibrated using the observed clustering of young stars. Simulations with low thresholds n ≤ 1 predict clustering that is too weak, while simulations with high star formation thresholds n ≳ 5, are consistent with the observed clustering. Finally, we test the CDM predictions against the circular velocities of nearby dwarf galaxies. Low thresholds predict velocities that are too high, while simulations with n ∼ 10 provide a good match to the observations. We thus conclude that the CDM model provides a good description of the structure of galaxies on kpc scales provided the effects of baryons are properly captured.


2018 ◽  
Vol 14 (S344) ◽  
pp. 455-463
Author(s):  
Julio F. Navarro

AbstractThe Lambda Cold Dark Matter (LCDM) paradigm makes specific predictions for the abundance, structure, substructure and clustering of dark matter halos, the sites of galaxy formation. These predictions can be directly tested, in the low-mass halo regime, by dark matter-dominated dwarf galaxies. A number of potential challenges to LCDM have been identified when confronting the expected properties of dwarfs with observation. I review our understanding of a few of these issues, including the “missing satellites” and the “too-big-to-fail” problems, and argue that neither poses an insurmountable challenge to LCDM. Solving these problems requires that most dwarf galaxies inhabit halos of similar mass, and that there is a relatively sharp minimum halo mass threshold to form luminous galaxies. These predictions are eminently falsifiable. In particular, LCDM predicts a large number of “dark” low-mass halos, some of which should have retained enough primordial gas to be detectable in deep 21 cm or Hα surveys. Detecting this predicted population of “mini-halos” would be a major discovery and a resounding success for LCDM on small scales.


2020 ◽  
Vol 499 (4) ◽  
pp. 5932-5940
Author(s):  
C Yamila Yaryura ◽  
Mario G Abadi ◽  
Stefan Gottlöber ◽  
Noam I Libeskind ◽  
Sofía A Cora ◽  
...  

ABSTRACT Associations of dwarf galaxies are loose systems composed exclusively of dwarf galaxies. These systems were identified in the Local Volume for the first time more than 30 yr ago. We study these systems in the cosmological framework of the Λ cold dark matter (ΛCDM) model. We consider the Small MultiDark Planck simulation and populate its dark matter haloes by applying the semi-analytic model of galaxy formation SAG. We identify galaxy systems using a friends-of-friends algorithm with a linking length equal to $b=0.4 \, {\rm Mpc}\, h^{-1}$ to reproduce the size of dwarf galaxy associations detected in the Local Volume. Our samples of dwarf systems are built up removing those systems that have one or more galaxies with stellar mass larger than a maximum threshold Mmax. We analyse three different samples defined by ${\rm log}_{10}(M_{\rm max}[{\rm M}_{\odot }\, h^{-1}]) = 8.5, 9.0$, and 9.5. On average, our systems have typical sizes of $\sim 0.2\, {\rm Mpc}\, h^{-1}$, velocity dispersion of $\sim 30 {\rm km\, s^{-1}}$, and estimated total mass of $\sim 10^{11} {\rm M}_{\odot }\, h^{-1}$. Such large typical sizes suggest that individual members of a given dwarf association reside in different dark matter haloes and are generally not substructures of any other halo. Indeed, in more than 90 per cent of our dwarf systems their individual members inhabit different dark matter haloes, while only in the remaining 10 per cent members do reside in the same halo. Our results indicate that the ΛCDM model can naturally reproduce the existence and properties of dwarf galaxies’ associations without much difficulty.


1996 ◽  
Vol 171 ◽  
pp. 435-435
Author(s):  
S.A. Pustilnik ◽  
V.A. Lipovetsky ◽  
J.-M. Martin ◽  
T.X. Thuan

We present the analysis of a new set of radio and optical observations of a large sample of Byurakan Blue Compact Galaxies. HI spectra were obtained with the Nançay 300-m and Green Bank 43-m radio telescopes. CCD-images were taken with the KPNO 0.9-m and Whipple Observatory 1.2-m telescopes. Dark Matter (DM) to luminous mass ratios in these BCGs were found to vary from about less than 0.5 up to 14. Recent data taken from the literature indicate this same range. This result has important consequences on models of dwarf galaxy formation, indicating possibly different formation mechanisms. The standard CDM model of dwarfs formation requires large DM halos. However the formation of dwarfs as tidal debris resulting from strong interactions of massive spirals leads naturally to dwarfs with low content of DM. On Fig.1 we show DM to luminous mass ratio versus rotational velocity for our BCGs and some other galaxies.


2021 ◽  
Vol 502 (2) ◽  
pp. 1785-1796
Author(s):  
R A Jackson ◽  
S Kaviraj ◽  
G Martin ◽  
J E G Devriendt ◽  
A Slyz ◽  
...  

ABSTRACT In the standard ΛCDM (Lambda cold dark matter) paradigm, dwarf galaxies are expected to be dark matter-rich, as baryonic feedback is thought to quickly drive gas out of their shallow potential wells and quench star formation at early epochs. Recent observations of local dwarfs with extremely low dark matter content appear to contradict this picture, potentially bringing the validity of the standard model into question. We use NewHorizon, a high-resolution cosmological simulation, to demonstrate that sustained stripping of dark matter, in tidal interactions between a massive galaxy and a dwarf satellite, naturally produces dwarfs that are dark matter-deficient, even though their initial dark matter fractions are normal. The process of dark matter stripping is responsible for the large scatter in the halo-to-stellar mass relation in the dwarf regime. The degree of stripping is driven by the closeness of the orbit of the dwarf around its massive companion and, in extreme cases, produces dwarfs with halo-to-stellar mass ratios as low as unity, consistent with the findings of recent observational studies. ∼30 per cent of dwarfs show some deviation from normal dark matter fractions due to dark matter stripping, with 10 per cent showing high levels of dark matter deficiency (Mhalo/M⋆ < 10). Given their close orbits, a significant fraction of dark matter-deficient dwarfs merge with their massive companions (e.g. ∼70 per cent merge over time-scales of ∼3.5 Gyr), with the dark matter-deficient population being constantly replenished by new interactions between dwarfs and massive companions. The creation of these galaxies is therefore a natural by-product of galaxy evolution and their existence is not in tension with the standard paradigm.


2004 ◽  
Vol 604 (1) ◽  
pp. 88-107 ◽  
Author(s):  
David J. Sand ◽  
Tommaso Treu ◽  
Graham P. Smith ◽  
Richard S. Ellis

2019 ◽  
Vol 485 (4) ◽  
pp. 5474-5489 ◽  
Author(s):  
Mark R Lovell ◽  
Jesús Zavala ◽  
Mark Vogelsberger

Abstract A cut-off in the linear matter power spectrum at dwarf galaxy scales has been shown to affect the abundance, formation mechanism and age of dwarf haloes, and their galaxies at high and low redshifts. We use hydrodynamical simulations of galaxy formation within the ETHOS framework in a benchmark model that has such a cut-off and that has been shown to be an alternative to the cold dark matter (CDM) model that alleviates its dwarf-scale challenges. We show how galaxies in this model form differently to CDM, on a halo-by-halo basis, at redshifts z ≥ 6. We show that when CDM haloes with masses around the ETHOS half-mode mass scale are resimulated with the ETHOS matter power spectrum, they form with 50 per cent less mass than their CDM counterparts due to their later formation times, yet they retain more of their gas reservoir due to the different behaviour of gas and dark matter during the monolithic collapse of the first haloes in models with a galactic-scale cut-off. As a result, galaxies in ETHOS haloes near the cut-off scale grow rapidly between z = 10 and 6 and by z = 6 end up having very similar stellar masses, higher gas fractions and higher star formation rates relative to their CDM counterparts. We highlight these differences by making predictions for how the number of galaxies with old stellar populations is suppressed in ETHOS for both z = 6 galaxies and for gas-poor Local Group fossil galaxies. Interestingly, we find an age gradient in ETHOS between galaxies that form in high- and low-density environments.


2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Beth Willman

The dwarf galaxy companions to the Milky Way are unique cosmological laboratories. With luminosities as low as10−7LMW, they inhabit the lowest mass dark matter halos known to host stars and are presently the most direct tracers of the distribution, mass spectrum, and clustering scale of dark matter. Their resolved stellar populations also facilitate detailed studies of their history and mass content. To fully exploit this potential requires a well-defined census of virtually invisible galaxies to the faintest possible limits and to the largest possible distances. I review the past and present impacts of survey astronomy on the census of Milky Way dwarf galaxy companions and discuss the future of finding ultra-faint dwarf galaxies around the Milky Way and beyond in wide-field survey data.


2017 ◽  
Vol 118 (16) ◽  
Author(s):  
Aaron D. Ludlow ◽  
Alejandro Benítez-Llambay ◽  
Matthieu Schaller ◽  
Tom Theuns ◽  
Carlos S. Frenk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document