Blood viscosity and red cell deformability

1980 ◽  
pp. 214-266 ◽  
Author(s):  
John A. Dormandy
1982 ◽  
Vol 41 (2-3) ◽  
pp. 167-170 ◽  
Author(s):  
M. Stäubli ◽  
W. Reinhart ◽  
P.W. Straub

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1001-1001
Author(s):  
Jon Detterich ◽  
Adam M Bush ◽  
Roberta Miyeko Kato ◽  
Rose Wenby ◽  
Thomas D. Coates ◽  
...  

Abstract Abstract 1001 Introduction: SCT occurs in 8% of African Americans and is not commonly associated with clinical disease. Nonetheless, the United States Armed Forces has reported that SCT conveys a 30-fold risk of sudden cardiac arrest and a 200-fold risk from exertional rhabdomyolysis. In fact, rhabdomyolysis in athletes with SCT has been the principal cause of death in NCAA football players in the last decade, leading to recently mandated SCT testing in all Division-1 players. In SCT, RBC sickle only under extreme conditions and with slow kinetics. Therefore, rhabdomyolysis most likely occurs in SCT when a “perfect storm” of factors converges to critically imbalance oxygen supply and demand in muscles. We hypothesize that in SCT subjects, abnormal RBC rheology, particularly aggregation and deformability, play an important role in abnormal muscle blood flow supply and distribution to exercising muscle. To test this hypothesis, we examined whole blood viscosity, RBC aggregation, and RBC deformability in 11 SCT and 10 control subjects prior to and following maximum handgrip exercise. Methods: Maximum voluntary contraction (MVC) was assessed by handgrip dynamometer in the dominant arm. Baseline blood was collected for CBC, whole blood viscosity, RBC aggregation, and RBC deformability. Patients then maintained 60% MVC exercise until exhaustion. Following 8 minutes of recovery, a venous blood gas and blood for repeat viscosity assessments was collected from the antecubital fossa of the exercising limb. Whole blood viscosity over a shear rate range of 1–1, 000 1/s was determined by an automated tube viscometer, RBC deformability from 0.5–50 Pa via laser ektacytometry (LORCA) and RBC aggregation in both autologous plasma and 3% dextran 70 kDa using an automated cone-place aggregometer (Myrenne). Aggregation measurements included extent at stasis (M), strength of aggregation (GT min) and kinetics (T ½). Results: Baseline CBC and aggregation values are summarized in Table 1. Both static RBC aggregation in plasma and RBC aggregation in dextran (aggregability) were significantly increased in SCT (Table 1). The rate of aggregation formation trended higher in SCT but the strength of aggregation was not different between the two groups. In SCT subjects, red cell deformability was impaired at low shear stress but greater than controls at higher shear stress (Figure 1). Red cell deformability was completely independent of oxygenation status states in both SCT and control subjects. Whole blood viscosity did not different between the two groups whether oxygenated or deoxygenated and prior to or following handgrip exercise. Discussion: Three important hemorheological differences were observed for SCT subjects versus controls: a) RBC deformability was below control at low stress levels yet greater than control at higher stress; b) The extent of RBC aggregation in autologous plasma was about 40% greater; c) The extent of RBC aggregation for washed RBC re-suspended in an aggregating medium (i.e., 3% dextran 70 kDa) was about 30% higher. RBC deformability is a major determinant of in vivo blood flow dynamics, especially in the microcirculation; decreased deformability adversely affects tissue perfusion. RBC aggregation is also an important determinant since it affects both resistance to blood flow and RBC distribution in a vascular bed (e.g., plasma skimming). The finding of greater aggregability (i.e., higher aggregation in the defined dextran medium) indicates that RBC in SCT have an altered membrane surface in which the penetration of this polymer into the glycocalyx is abnormal. The combined effects of these three rheological parameters is likely to impair in vivo blood flow in SCT, perhaps to a degree resulting in pathophysiological changes of the cardiovascular system. Disclosures: Coates: Novartis: Speakers Bureau; Apopharma: Consultancy. Wood:Ferrokin Biosciences: Consultancy; Shire: Consultancy; Apotex: Consultancy, Honoraria; Novartis: Honoraria, Research Funding.


1979 ◽  
Author(s):  
G.D.O. Lowe ◽  
M.M. Drummond ◽  
J.J.F. Belch ◽  
J.M. Lowe ◽  
A.C. MacCuish ◽  
...  

We compared red cell deformability (filtration rate through 5 μ sieves), blood viscosity (rotational viscometer), haematocrit, plasma fibrinogen and plasma viscosity in young male diabetics (age <50 years) and normal controls matched for age and smoking habit. diabetics with no retinopathy or other vascular complications (n = 20) had normal red cell deformability, but increased blood viscosity at shear rates of 100s-1 (p<0.05) and is-1 (p<0. 01), due in part to moderate elevations of haematocrit, fibrinogen and plasma viscosity. Diabetics with retinopathy (n = 10) had a more marked increase in viscosity and also reduced red cell deformability (p<0.05). Increased blood viscosity is present prior to the onset of detectable vascular complications in male diabetics, while reduced red cell deformability is associated with complications.


1979 ◽  
Author(s):  
G Lowe ◽  
M Drummond ◽  
J Belch ◽  
J Lowe ◽  
A MacCuish ◽  
...  

We compared red cell deformability (filtration rate through 5 µ sieves), blood viscosity (rotational viscometer), haematocrit, plasma fibrinogen and plasma viscosity in young male diabetics (age ˂50 years) and normal controls matched for age and smoking habit. Diabetics with no retinopathy or other vascular complications (n = 20) had normal red cell deformability, but increased blood viscosity at shear rates of 100s-1(p ˂0. 05) and 1s-1(p ˂0. 01), due in part to moderate elevations of haematocrit, fibrinogen and plasma viscosity. Diabetics with retinopathy (n = 10) had a more marked increase in viscosity and also reduced red cell deformability (p ˂0. 05). Increased blood viscosity is present prior to the onset of detectable vascular complications in male diabetics, while reduced red cell deformability is associated with complications.


Author(s):  
S Ono ◽  
S Ashida ◽  
Y Abiko

The hemorheological effect of ticlopidine was studied in rats ex vivo. Ticlopidine (30-300 mg/kg) was orally given to rats. Heparinized blood samples were taken from the carotid artery under pentobarbital anesthesia 3 hr after the drug administration for measurement of whole blood viscosity (ELD type cone-plate viscometer), micropore filtrability of red cells (Nuclepore membrane, 5 µm), erythrocyte sedimentation rate (ESR), hematocrit (Ht) and plasma fibrinogen. Red cell deformability was measured by counting the shear stressinduced cap-form cells under a scanning electronmicroscope. Mechanical flexibility of red cells was also studied by measuring hemolysis caused by turbulant flow.Ticlopidine treatment caused a significant decrease in whole blood viscosity (9.13 ± 0.15 and 6.17 ± 0.08 versus 9.80 ± 0.18 and 6.74 ± 0.09 Cp in control at 19.2 sec-1and 76.8 sec-1, respectively) and a significant increase in micropore filtrability of the red cells (0.54 ± 0.01 versus 0.40 ± 0.02 ml/min in control) without any changes in ESR, Ht and plasma fibrinogen. Ticlopidine also significantly stimulated the shear stress-induced shape change of the red cells to cap-form cells (12.08 ± 0.13 versus 8.66 ± 0.23 % in control) and prevented mechanical hemolysis caused by a turbulant flow (16.8 ± 1 . 6 versus 30.5 ± 2.5 % in control).In addition to the platelet aggregation inhibitory action the hemorheological action of this agent may be useful for improving microcirculation and protecting red cells from mechanical disruption by turbulant blood flow.Increase in the adenylate cyclase and Mg2+-activated adenosine triphosphatase activities in red cell membranes may be associated with the effect of ticlopidine to increase red cell deformability.


1989 ◽  
Vol 4 (1) ◽  
pp. 31-35
Author(s):  
E. Ernst ◽  
T. Saradeth ◽  
I. Magyarosy ◽  
A. Matrai

Twelve male volunteers were submitted to strict bed rest. Before, 36 hours, and 84 hours after the start of immobilisation venous blood was drawn. Blood viscosity, haematocrit, plasma viscosity, red cell aggregation, red cell deformability, blood pressure, heart rate and body weight were determined. Results show marked haemoconcentration with significant elevations of blood viscosity, haematocrit, plasma viscosity and red cell aggregation during bed rest. Body weight declines by more than 1 kg. It is suggested that haemoconcentration reduces the fluidity of blood, which in turn decreases flow, thereby predisposing to venous thrombosis in clinical situations with bed rest


Sign in / Sign up

Export Citation Format

Share Document