Semiclassical Methods in Molecular Scattering and Spectroscopy

1993 ◽  
Vol 3 (2) ◽  
pp. 471-499 ◽  
Author(s):  
Jean Bellissard ◽  
Armelle Barelli

Author(s):  
S. A. Sadovnikov

Introduction: Successful monitoring of environmental parameters requires the development of flexible software complexes with evolvable calculation functionality. Purpose: Developing a modular system for numerical simulation of atmospheric laser gas analysis. Results: Based on differential absorption method, a software system has been developed which provides the calculation of molecular absorption cross-sections, molecular absorption coefficients, atmospheric transmission spectra, and lidar signals. Absorption line contours are calculated using the Voigt profile. The prior information sources are HITRAN spectroscopic databases and statistical models of the distribution of temperature, pressure and gas components in the atmosphere. For modeling lidar signals, software blocks of calculating the molecular scattering coefficient and aerosol absorption/scattering coefficients were developed. For testing the applicability of various laser sources in the problems of environmental monitoring of the atmosphere, a concentration reconstruction error calculation block was developed for the atmospheric gas components, ignoring the interfering absorption of laser radiation by foreign gases. To verify the correct functioning of the software, a program block was developed for comparing the results of the modeling of atmospheric absorption and transmission spectra by using the standard SPECTRA information system. The discrepancy between the calculation of the atmospheric transmission spectra obtained using the developed system as compared to the SPECTRA results is less than 1%. Thus, a set of the presented program blocks allows you to carry out complex modeling of remote atmospheric gas analysis. Practical relevance: The software complex allows you to rapidly assess the possibilities of using a wide range of laser radiation sources for the problems of remote gas analysis.


1953 ◽  
Vol 92 (5) ◽  
pp. 1282-1283
Author(s):  
Joseph A. Thie

Sign in / Sign up

Export Citation Format

Share Document