Critical Rates of Stellar Mass Loss

Author(s):  
D. S. P. Dearborn ◽  
J. B. Blake
Keyword(s):  
Nature ◽  
1981 ◽  
Vol 289 (5799) ◽  
pp. 659-661 ◽  
Author(s):  
M. E. Bailey ◽  
J. MacDonald

2013 ◽  
Vol 560 ◽  
pp. A6 ◽  
Author(s):  
G. Gräfener ◽  
J. S. Vink

2013 ◽  
Vol 435 (3) ◽  
pp. 2416-2430 ◽  
Author(s):  
Dimitri Veras ◽  
John D. Hadjidemetriou ◽  
Christopher A. Tout
Keyword(s):  

2018 ◽  
Vol 14 (S346) ◽  
pp. 83-87
Author(s):  
Vikram V. Dwarkadas

AbstractMassive stars lose a considerable amount of mass during their lifetime. When the star explodes as a supernova (SN), the resulting shock wave expands in the medium created by the stellar mass-loss. Thermal X-ray emission from the SN depends on the square of the density of the ambient medium, which in turn depends on the mass-loss rate (and velocity) of the progenitor wind. The emission can therefore be used to probe the stellar mass-loss in the decades or centuries before the star’s death.We have aggregated together data available in the literature, or analysed by us, to compute the X-ray lightcurves of almost all young supernovae detectable in X-rays. We use this database to explore the mass-loss rates of massive stars that collapse to form supernovae. Mass-loss rates are lowest for the common Type IIP supernovae, but increase by several orders of magnitude for the highest luminosity X-ray SNe.


2011 ◽  
Vol 734 (1) ◽  
pp. 48 ◽  
Author(s):  
Samuel N. Leitner ◽  
Andrey V. Kravtsov

2003 ◽  
Vol 209 ◽  
pp. 237-238 ◽  
Author(s):  
G. Handler

A new class of variable star is proposed. These are variable central stars of young Planetary Nebulae exhibiting roughly sinusoidal (semi)regular photometric and/or radial velocity variations with time scales of several hours. Fourteen of these objects have been identified. Their temperatures are between 25000 and 50000 K and most show hydrogen-rich spectra. The most likely reason for the variability is stellar pulsation. Another possibility would be variable stellar mass loss, but in that case the mechansism causing it must be different from that operating in massive O stars. We speculate that it actually is the stellar pulsations which cause mass loss mdulations.


1996 ◽  
Vol 171 ◽  
pp. 412-412
Author(s):  
K. Matsushita ◽  
K. Makishima

Using ASCA, we have confirmed that the ISM of X-ray bright elliptical galaxies are surprisingly metal poor, as compared to the theoretical predictions. In fact the exact values of the derived metallicity depend considerably on the plasma emission codes. However, the overall metallicity cannot be larger than ∼ 1 solar. For low LX/LB galaxies, all the available plasma codes suggest abundances less than half a solar. The ASCA spectra may be compatible with somewhat higher metallicity if we assume there is an additional low-temperature component (e.g. kTe ∼ 0.3 keV). However, the derived abundance can not be over 1 solar. In particular, the Si abundance turns out to be < 1.5 solar, confirming the metal-poor nature of the ISM. These ASCA results are in severe contradiction with most of the SN Ia rate, particularly that of Tammann (1982). Considering further that a fairly long time (109–10yr) is needed for the stellar mass loss to accumulates into the ISM, it is suggested that the SN Ia rate has remained quite low throughout Hubble time.


Sign in / Sign up

Export Citation Format

Share Document