A New B-Subdwarf Eclipsing Binary with an Extremely Short Period

Author(s):  
J. W. Menzies ◽  
F. Marang
2008 ◽  
Vol 60 (4) ◽  
pp. 803-808 ◽  
Author(s):  
Yuan-Gui Yang ◽  
Sheng-Bang Qian ◽  
Li-Ying Zhu ◽  
Liang Liu ◽  
Kazuhiro Nakajima

2020 ◽  
Vol 497 (1) ◽  
pp. L19-L23 ◽  
Author(s):  
John Southworth ◽  
D M Bowman ◽  
A Tkachenko ◽  
K Pavlovski

ABSTRACT V453 Cyg is an eclipsing binary containing 14 and 11 $\, {\rm M}_\odot$ stars in an eccentric short-period orbit. We have discovered β Cep-type pulsations in this system using Transiting Exoplanet Survey Satellite data. We identify seven significant pulsation frequencies, between 2.37 and 10.51 d−1, in the primary star. These include six frequencies that are separated by yet significantly offset from harmonics of the orbital frequency, indicating they are tidally perturbed modes. We have determined the physical properties of the system to high precision: V453 Cyg A is the first β Cep pulsator with a precise mass measurement. The system is a vital tracer of the physical processes that govern the evolution of massive single and binary stars.


2002 ◽  
Vol 187 ◽  
pp. 337-338
Author(s):  
A. Yamasaki ◽  
M. Takeda ◽  
T. Yamauchi ◽  
G. Takada ◽  
S. Hattori

AbstractVariability of the light curves of the short-period eclipsing binary system GR Tau (, almost-contact binary) is studied. It is found that GR Tau experienced both the state which is characterized by asymmetric light curves and the state characterized by symmetrical light curves.


2019 ◽  
Vol 487 (3) ◽  
pp. 4230-4237 ◽  
Author(s):  
M Skarka ◽  
P Kabáth ◽  
E Paunzen ◽  
M Fedurco ◽  
J Budaj ◽  
...  

2002 ◽  
Vol 187 ◽  
pp. 239-243 ◽  
Author(s):  
Howard E. Bond ◽  
M. Sean O’Brien ◽  
Edward M. Sion ◽  
Dermott J. Mullan ◽  
Katrina Exter ◽  
...  

AbstractV471 Tauri is a short-period eclipsing binary, and a member of the Hyades. It is composed of a hot DA white dwarf (WD) and a cool main-sequence dK2 companion. HST radial velocities of the WD, in combination with the ground-based spectroscopic orbit of the K star, yield dynamical masses of MWD = 0.84 and MdK = 0.93 M⊙. During the UV observations we serendipitously detected coronal mass ejections from the K star, passing in front of the WD and appearing as sudden, transient metallic absorption. Eclipse timings show that the active dK star is 18% larger than a main-sequence star of the same mass, an apparent consequence of its extensive starspot coverage. The high Teff and high mass of the WD are paradoxical: the WD is the most massive in the Hyades, but also the youngest. A plausible scenario is that the progenitor system was a triple, with a close inner pair that merged after several × 108 yr to produce a single blue straggler. When this star evolved to the AGB phase, it underwent a common-envelope interaction with a distant dK companion, which spiraled down to its present separation and ejected the envelope. The common-envelope efficiency parameter, αCE, was of order 0.3–1.0, in good agreement with recent hydrodynamical simulations.SuWt 2 is a southern-hemisphere planetary nebula (PN) with an unusual ring-shaped morphology. The central star is an eclipsing binary with a period of 4.9 days. Surprisingly, the binary is composed of two main-sequence A-type stars with similar masses of ~ 2.5 M⊙. We discuss scenarios involving a third companion which ejected and ionizes the PN.WeBo 1 is a northern PN with a ring morphology remarkably similar to that of SuWt 2. Although we hoped that its central star would shed light on the nature of SuWt 2, it has proven instead to be a late-type barium star!


2017 ◽  
Vol 14 (S339) ◽  
pp. 295-298
Author(s):  
M. Fedurco ◽  
Š. Parimucha ◽  
P. Gajdoš

AbstractKIC 4851217 is a short period eclipsing binary (P = 2.47 days) in the field of the Kepler K1 mission. As well as variability caused by the eclipses, low-amplitude pulsations are also present in the data. A frequency analysis of the residual light-curve revealed δ Sct pulsations in the frequency range from 15–21 d−1 with amplitudes up to 3.5 mmag. Strong linear coupling (fi = fp + kforb) to orbital frequency was found, indicating tidally locked modes. From an analysis of 5 selected groups of frequencies we identified a radial mode on the secondary component, 3 dipole modes (l = |m| = 1), one of them present on the secondary component, and a quadrupole mode (l = |m| = 2), also located on the secondary component.


New Astronomy ◽  
2021 ◽  
Vol 83 ◽  
pp. 101502
Author(s):  
B Zhang ◽  
S-B Qian ◽  
Zejda Miloslav ◽  
Q-J Zhi ◽  
A-J Dong ◽  
...  

New Astronomy ◽  
2015 ◽  
Vol 36 ◽  
pp. 32-36 ◽  
Author(s):  
Daimei Wang ◽  
Liyun Zhang ◽  
Xianming L. Han ◽  
Franz Agerer ◽  
Qingfeng Pi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document