scholarly journals V802 Aquilae: A Short-Period Eclipsing Binary with Magnetic Activity

2008 ◽  
Vol 60 (4) ◽  
pp. 803-808 ◽  
Author(s):  
Yuan-Gui Yang ◽  
Sheng-Bang Qian ◽  
Li-Ying Zhu ◽  
Liang Liu ◽  
Kazuhiro Nakajima
2014 ◽  
Vol 147 (3) ◽  
pp. 50 ◽  
Author(s):  
Qing-feng Pi ◽  
Li-Yun Zhang ◽  
Zhong-mu Li ◽  
Xi-liang Zhang

2017 ◽  
Vol 844 (2) ◽  
pp. 134 ◽  
Author(s):  
Jack B. Lubin ◽  
Joseph E. Rodriguez ◽  
George Zhou ◽  
Kyle E. Conroy ◽  
Keivan G. Stassun ◽  
...  

2019 ◽  
Vol 877 (2) ◽  
pp. 75 ◽  
Author(s):  
Qing-feng Pi ◽  
Li-yun Zhang ◽  
Shao-lan Bi ◽  
Xianming L. Han ◽  
Hong-peng Lu ◽  
...  

2018 ◽  
Vol 620 ◽  
pp. A189 ◽  
Author(s):  
K. Oláh ◽  
S. Rappaport ◽  
T. Borkovits ◽  
T. Jacobs ◽  
D. Latham ◽  
...  

Context. Stars can maintain their observable magnetic activity from the pre-main sequence (PMS) to the tip of the red giant branch. However, the number of known active giants is much lower than active stars on the main sequence (MS) since the stars spend only about 10% of their MS lifetime on the giant branch. Due to their rapid evolution it is difficult to estimate the stellar parameters of giant stars. A possibility for obtaining more reliable stellar parameters for an active giant arises when it is a member of an eclipsing binary system. Aims. We have discovered EPIC 211759736, an active spotted giant star in an eclipsing binary system during the Kepler K2 Campaign 5. The eclipsing nature allows us to much better constrain the stellar parameters than in most cases of active giant stars. Methods. We have combined the K2 data with archival HATNet, ASAS, and DASCH photometry, new spectroscopic radial velocity measurements, and a set of follow-up ground-based BVRCIC photometric observations, to find the binary system parameters as well as robust spot models for the giant at two different epochs. Results. We determined the physical parameters of both stellar components and provide a description of the rotational and long-term activity of the primary component. The temperatures and luminosities of both components were examined in the context of the Hertzsprung–Russell diagram. We find that both the primary and the secondary components deviate from the evolutionary tracks corresponding to their masses in the sense that the stars appear in the diagram at lower masses than their true masses. Conclusions. We further evaluate the proposition that traditional methods generally result in higher masses for active giants than what is indicated by stellar evolution tracks in the HR diagram. A possible reason for this discrepancy could be a strong magnetic field, since we see greater differences in more active stars.


2020 ◽  
Vol 497 (1) ◽  
pp. L19-L23 ◽  
Author(s):  
John Southworth ◽  
D M Bowman ◽  
A Tkachenko ◽  
K Pavlovski

ABSTRACT V453 Cyg is an eclipsing binary containing 14 and 11 $\, {\rm M}_\odot$ stars in an eccentric short-period orbit. We have discovered β Cep-type pulsations in this system using Transiting Exoplanet Survey Satellite data. We identify seven significant pulsation frequencies, between 2.37 and 10.51 d−1, in the primary star. These include six frequencies that are separated by yet significantly offset from harmonics of the orbital frequency, indicating they are tidally perturbed modes. We have determined the physical properties of the system to high precision: V453 Cyg A is the first β Cep pulsator with a precise mass measurement. The system is a vital tracer of the physical processes that govern the evolution of massive single and binary stars.


2002 ◽  
Vol 187 ◽  
pp. 337-338
Author(s):  
A. Yamasaki ◽  
M. Takeda ◽  
T. Yamauchi ◽  
G. Takada ◽  
S. Hattori

AbstractVariability of the light curves of the short-period eclipsing binary system GR Tau (, almost-contact binary) is studied. It is found that GR Tau experienced both the state which is characterized by asymmetric light curves and the state characterized by symmetrical light curves.


2019 ◽  
Vol 487 (3) ◽  
pp. 4230-4237 ◽  
Author(s):  
M Skarka ◽  
P Kabáth ◽  
E Paunzen ◽  
M Fedurco ◽  
J Budaj ◽  
...  

2002 ◽  
Vol 187 ◽  
pp. 239-243 ◽  
Author(s):  
Howard E. Bond ◽  
M. Sean O’Brien ◽  
Edward M. Sion ◽  
Dermott J. Mullan ◽  
Katrina Exter ◽  
...  

AbstractV471 Tauri is a short-period eclipsing binary, and a member of the Hyades. It is composed of a hot DA white dwarf (WD) and a cool main-sequence dK2 companion. HST radial velocities of the WD, in combination with the ground-based spectroscopic orbit of the K star, yield dynamical masses of MWD = 0.84 and MdK = 0.93 M⊙. During the UV observations we serendipitously detected coronal mass ejections from the K star, passing in front of the WD and appearing as sudden, transient metallic absorption. Eclipse timings show that the active dK star is 18% larger than a main-sequence star of the same mass, an apparent consequence of its extensive starspot coverage. The high Teff and high mass of the WD are paradoxical: the WD is the most massive in the Hyades, but also the youngest. A plausible scenario is that the progenitor system was a triple, with a close inner pair that merged after several × 108 yr to produce a single blue straggler. When this star evolved to the AGB phase, it underwent a common-envelope interaction with a distant dK companion, which spiraled down to its present separation and ejected the envelope. The common-envelope efficiency parameter, αCE, was of order 0.3–1.0, in good agreement with recent hydrodynamical simulations.SuWt 2 is a southern-hemisphere planetary nebula (PN) with an unusual ring-shaped morphology. The central star is an eclipsing binary with a period of 4.9 days. Surprisingly, the binary is composed of two main-sequence A-type stars with similar masses of ~ 2.5 M⊙. We discuss scenarios involving a third companion which ejected and ionizes the PN.WeBo 1 is a northern PN with a ring morphology remarkably similar to that of SuWt 2. Although we hoped that its central star would shed light on the nature of SuWt 2, it has proven instead to be a late-type barium star!


Sign in / Sign up

Export Citation Format

Share Document