efficiency parameter
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 16)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Vol 13 (23) ◽  
pp. 4777
Author(s):  
Li Yan ◽  
Yao Li ◽  
Hong Xie

With the development of UAV and oblique photogrammetry technology, the multi-view stereo image has become an important data source for 3D urban reconstruction, and the surface meshes generated by it have become a common way to represent the building surface model due to their high geometric similarity and high shape representation ability. However, due to the problem of data quality and lack of building structure information in multi-view stereo image data sources, it is a huge challenge to generate simplified polygonal models from building surface meshes with high data redundancy and fuzzy structural boundaries, along with high time consumption, low accuracy, and poor robustness. In this paper, an improved mesh representation strategy based on 1-ring patches is proposed, and the topology validity is improved on this basis. Experimental results show that our method can reconstruct the concise, manifold, and watertight surface models of different buildings, and it can improve the processing efficiency, parameter adaptability, and model quality.


Robotica ◽  
2021 ◽  
pp. 1-21
Author(s):  
Denglong Ma ◽  
Weigao Mao ◽  
Wei Tan ◽  
Jianmin Gao ◽  
Zaoxiao Zhang ◽  
...  

Abstract The leakage of hazardous chemicals and toxic volatile substances in the atmosphere may cause serious consequences such as explosion and poisoning. To identify the unknown leakage locations and gas compositions, a mobile robot system to trace the leak source in the outdoor was investigated. First, two bionic searching algorithms, Zigzag and Silkworm algorithms, were tested with outdoor experiments for locating the leak source. The results showed that the locating errors of these two algorithms were within 0.5 m in 10 by 20 m search space, but the failing ratio of Zigzag and Silkworm algorithm was still high (about 40–50%). Therefore, an improved tracing algorithm combining the Silkworm and Zigzag algorithm, called as zigzag–Silkworm algorithm, was proposed. Compared with Silkworm and Zigzag algorithms, zigzag–Silkworm algorithm had a higher success ratio of 80% in outdoor source tracing tests, and the searching efficiency was enhanced, the efficiency parameter L: L 0 has improved from 2.58 for Silkworm and 2.66 for Zigzag to 2.17 for zigzag–Silkworm. Then, in order to identify the composition of the leaked gases during the source tracing, an artificial olfaction system (AOS) based on the gas sensor array and support vector machine was set on the mobile robot. The test results in the source tracing experiments with ammonia and ethanol emissions indicated that the recognition accuracy of emission gases reached to 99% with AOS equipped on the robot. Therefore, the mobile robot system equipped with the zigzag–Silkworm algorithm and the AOS is feasible to trace the leakage source and identify the emission composition in the outdoor leakage event with good performance in efficiency and accuracy although some underlying problems still need to be addressed in future work.


Author(s):  
A.Yu. Svetlakova ◽  
◽  
T.T. Kaverzneva ◽  

Often, the employers allocate funds for occupational safety on the residual principle without considering the real needs in creating safe working conditions for the employees. This is especially topical for the small and medium-sized enterprises, whose budget, as a rule, does not allow to allocate sufficient funds for occupational safety. The substantiation is given concerning the need to improve modern systems for assessing the state of working conditions by integrating the missing elements, which are part of similar systems, selected during the analysis of domestic and foreign studies. In the critical review of foreign publications in the field of assessing the state of working conditions, the tools developed over the past 15 years are considered. The lines of business are selected related to the improvement of system for assessing the state of working conditions at the small and medium-sized Russian enterprises. To determine the most optimal methods, an algorithm is proposed for selecting the tools to assess the state of working conditions based on determining the efficiency parameter corresponding to each tool. Modern Russian methods are assessed in a similar way. As a result of the study, two tools for assessing the state of working conditions that are most optimal for small and medium-sized enterprises are selected. The analysis showed that the first selected method allows to assess the state of the personnel working conditions, i.e., gives a subjective assessment. The second method serves for an objective study of the estimated parameters, as well as for assessing the level of occupational hazard. Combined use of both tools can become the basis for the formation of a methodology for a comprehensive assessment of the state of working conditions at the small and medium-sized enterprises.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 579
Author(s):  
Agustin Pérez-Madrid ◽  
Ivan Santamaría-Holek

We present a novel theoretical approach to the problem of light energy conversion in thermostated semiconductor junctions. Using the classical model of a two-level atom, we deduced formulas for the spectral response and the quantum efficiency in terms of the input photons’ non-zero chemical potential. We also calculated the spectral entropy production and the global efficiency parameter in the thermodynamic limit. The heat transferred to the thermostat results in a dissipative loss that appreciably controls the spectral quantities’ behavior and, therefore, the cell’s performance. The application of the obtained formulas to data extracted from photovoltaic cells enabled us to accurately interpolate experimental data for the spectral response and the quantum efficiency of cells based on Si-, GaAs, and CdTe, among others.


2020 ◽  
Vol 20 (4) ◽  
pp. 72-77
Author(s):  
A. G. Zheleznov ◽  
V. A. Godlevskiy ◽  
O. V. Blinov

The kinetics theory of ordered boundary lubricating layer formation is presented. The theory contains the description of the formation of boundary lubricating layer from liquid lubricating media containing tribo-active adsorbing component. The expressions for specific forming time and thickness of the boundary lubrication layer in the conditions of the considered model are defined. The prospects of the mentioned parameters experimental definition they are marked out. The tribological efficiency parameter of tribological additive is introduced. This parameter can be evaluated in model physicochemical researches or by molecular modelling methods.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2811
Author(s):  
Dheaya Alrousan ◽  
Arsalan Afkhami ◽  
Khalid Bani-Melhem ◽  
Patrick Dunlop

In keeping with the circular economy approach, reclaiming greywater (GW) is considered a sustainable approach to local reuse of wastewater and a viable option to reduce household demand for freshwater. This study investigated the mineralization of total organic carbon (TOC) in GW using TiO2-based advanced oxidation processes (AOPs) in a custom-built stirred tank reactor. The combinations of H2O2, O3, and immobilized TiO2 under either dark or UVA irradiation conditions were systematically evaluated—namely TiO2/dark, O3/dark (ozonation), H2O2/dark (peroxidation), TiO2/UVA (photocatalysis), O3/UVA (Ozone photolysis), H2O2/UVA (photo-peroxidation), O3/TiO2/dark (catalytic ozonation), O3/TiO2/UVA (photocatalytic ozonation), H2O2/TiO2/dark, H2O2/TiO2/UVA, H2O2/O3/dark (peroxonation), H2O2/O3/UVA (photo-peroxonation), H2O2/O3/TiO2/dark (catalytic peroxonation), and H2O2/O3/TiO2/UVA (photocatalytic peroxonation). It was found that combining different treatment methods with UVA irradiation dramatically enhanced the organic mineralization efficiency. The optimum TiO2 loading in this study was observed to be 0.96 mg/cm2 with the highest TOC removal (54%) achieved using photocatalytic peroxonation under optimal conditions (0.96 mg TiO2/cm2, 25 mg O3/min, and 0.7 H2O2/O3 molar ratio). In peroxonation and photo-peroxonation, the optimal H2O2/O3 molar ratio was identified to be a critical efficiency parameter maximizing the production of reactive radical species. Increasing ozone flow rate or H2O2 dosage was observed to cause an efficiency inhibition effect. This lab-based study demonstrates the potential for combined TiO2-AOP treatments to significantly reduce the organic fraction of real GW, offering potential for the development of low-cost systems permitting safe GW reuse.


2020 ◽  
Vol 14 (1) ◽  
pp. 99-112
Author(s):  
N. Labdelli ◽  
S. Soulimane

This paper reviews the development of a new microvalve with a cone-shaped tube, inspired by venous valves in the human body. Our microvalves allow fluid flow in one direction while restricting the flow in the opposite direction. When a microvalve is used to control the amount of drug delivery, the efficiency between inlet and outlet flow rate is the key control parameter for regulating and controlling the micro channel (opening/closing). This paper is devoted to the numerical study of flow rate changes in different microvalve geometries (3D) using a Fluid Structure Interaction (FSI) method with an Arbitrary Lagrangian Eulerian (ALE) approach. Numerical simulations were carried out in comsol Multiphysics. In addition, the macrovalve performance was analysed for several pressures where the effect of different geometrical parameters such as the length of the anchor, the diameter at the base and the angle of the cone were studied. An efficiency parameter 𝐸𝑓𝑓 was employed to compare the different structures. For the best design obtained, it was found that the cone angle was the parameter having the most effect on the microvalves’ characteristics, and the forward flow rate was more than doubled compared to the reverse leakage rate.


2020 ◽  
Vol 142 (11) ◽  
Author(s):  
M. Erfanian Nakhchi ◽  
M. T. Rahmati

Abstract In this study, computational simulations have been performed to investigate the turbulent characteristics and energy consumption through heat exchanger tubes equipped by new perforated V-shaped rectangular winglet (PVRW) turbulators. The effects of the holes intensity on the velocity and temperature contours are additionally investigated. The Reynolds number, hole diameter ratio, and the number of holes selected are in the range of 5000 ≤ Re ≤ 18,000, 0 ≤ DR ≤ 0.40, and 0 ≤ N ≤ 14, respectively. Renormalization group (RNG) k–ε turbulent model which is a finite volume solver is utilized for the computational fluid dynamics (CFD) simulation. It was noticed that the proposed perforated turbulators could considerably intensify the thermal performance compared to typical VRW inserts. It is found that the recirculating flow generated by the PVRW augments the fluid mixing and transfers the heat from the pipe walls to the core of the tube. The simulations illustrate that the amount of heat transfer enhances 25.2% reducing the DR from 0.4 to 0.13 at Re = 18,000 and N = 14. Also, using PVRW turbulators with N = 7 and DR = 0.26 augments the average Nusselt number around 354.3% compared to the circular pipe without inserts. The highest thermal efficiency parameter of η = 2.25 could be obtained at Re = 5000 for the heat exchangers fitted by vortex generators with N = 14 and DR = 0.26.


Sign in / Sign up

Export Citation Format

Share Document