Signal molecules involved in plant embryogenesis

Author(s):  
Ed D. L. Schmidt ◽  
Anke J. de Jong ◽  
Sacco C. de Vries
1994 ◽  
Vol 26 (5) ◽  
pp. 1305-1313 ◽  
Author(s):  
Ed D. L. Schmidt ◽  
Anke J. de Jong ◽  
Sacco C. de Vries

Author(s):  
Anja Klančnik ◽  
Iztok Dogša ◽  
Sonja Smole Možina ◽  
Dina Ramić

2018 ◽  
Author(s):  
Luz Irina Calderón Villalobos ◽  
María José Iglesias ◽  
María Cecilia Terrile ◽  
Claudia Casalongué

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 557d-557
Author(s):  
Jennifer Warr ◽  
Fenny Dane ◽  
Bob Ebel

C6 volatile compounds are known to be produced by the plant upon pathogen attack or other stress-related events. The biological activity of many of these substances is poorly understood, but some might produce signal molecules important in host–pathogen interactions. In this research we explored the possibility that lipid-derived C6 volatiles have a direct effect on bacterial plant pathogens. To this purpose we used a unique tool, a bacterium genetically engineered to bioluminesce. Light-producing genes from a fish-associated bacterium were introduced into Xanthomonas campestris pv. campestris, enabling nondestructive detection of bacteria in vitro and in the plant with special computer-assisted camera equipment. The effects of different C6 volatiles (trans-2 hexanal, trans-2 hexen-1-ol and cis-3 hexenol) on growth of bioluminescent Xanthomonas campestris were investigated. Different volatile concentrations were used. Treatment with trans-2 hexanal appeared bactericidal at low concentrations (1% and 10%), while treatments with the other volatiles were not inhibitive to bacterial growth. The implications of these results with respect to practical use of trans-2 hexanal in pathogen susceptible and resistant plants will be discussed.


2020 ◽  
Vol 25 (45) ◽  
pp. 4755-4762 ◽  
Author(s):  
Rodrigo Varas ◽  
Fernando C. Ortiz

: Myelin is a specialized membrane allowing for saltatory conduction of action potentials in neurons, an essential process to achieve the normal communication across the nervous system. Accordingly, in diseases characterized by the loss of myelin and myelin forming cells -oligodendrocytes in the CNS-, patients show severe neurological disabilities. After a demyelinated insult, microglia, astrocytes and oligodendrocyte precursor cells invade the lesioned area initiating a spontaneous process of myelin repair (i.e. remyelination). A preserved hallmark of this neuroinflammatory scenario is a local increase of oxidative stress, where several cytokines and chemokines are released by glial and other cells. This generates an environment that determines cell interaction resulting in oligodendrocyte maturity and the ability to synthesize new myelin. Herein we review the main features of the regulatory aspect of these molecules based on recent findings and propose new putative signal molecules involved in the remyelination process, focused in the etiology of Multiple Sclerosis, one of the main demyelinating diseases causing disabilities in the population.


Sign in / Sign up

Export Citation Format

Share Document