Monitoring genetic fidelity vs somaclonal variation in Norway spruce (Picea abies) somatic embryogenesis by RAPD analysis

Author(s):  
Berthold Heinze ◽  
Josef Schmidt
Author(s):  
S. von Arnold ◽  
D. Clapham ◽  
U. Egertsdotter ◽  
I. Ekberg ◽  
H. Mo ◽  
...  

2017 ◽  
Vol 59 (1) ◽  
pp. 93-103 ◽  
Author(s):  
Teresa Hazubska-Przybył ◽  
Monika Dering

AbstractEmbryogenic cultures of plants are exposed to various stress factors bothin vitroand during cryostorage. In order to safely include the plant material obtained by somatic embryogenesis in combination with cryopreservation for breeding programs, it is necessary to monitor its genetic stability. The aim of the present study was the assessment of somaclonal variation in plant material obtained from embryogenic cultures ofPicea abies(L.) Karst. andP. omorika(Pančić) Purk. maintainedin vitroor stored in liquid nitrogen by the pregrowth-dehydration method. The analysis of genetic conformity with using microsatellite markers was performed on cotyledonary somatic embryos (CSE), germinating somatic embryos (GSE) and somatic seedlings (SS), obtained from tissues maintainedin vitroor from recovered embryogenic tissues (ETc) and CSE obtained after cryopreservation. The analysis revealed changes in the DNA of somatic embryogenesis-derived plant material of bothPiceaspp. They were found in plant material from 8 out of 10 tested embryogenic lines ofP. abiesand in 10 out of 19 embryogenic lines ofP. omorikaafterin vitroculture. Changes were also detected in plant material obtained after cryopreservation. Somaclonal variation was observed in ETc and CSE ofP. omorikaand at ETv stage ofP. abies. However, most of the changes were induced at the stage of somatic embryogenesis initiation. These results confirm the need for monitoring the genetic stability of plants obtained by somatic embryogenesis and after cryopreservation for both spruce species.


2009 ◽  
Vol 55 (No. 2) ◽  
pp. 75-80 ◽  
Author(s):  
J. Malá ◽  
M. Cvikrová ◽  
P. Máchová ◽  
O. Martincová

Contents of free polyamines (putrescine, spermidine and spermine) were determined in different developmental stages of Norway spruce (<I>Picea abies</I> [L.] Karst.) somatic embryos by means of HPLC. Determinations were performed embryogenic tissue after 4 weeks of the growth on proliferation medium, after 2 and 5 weeks of the culturing on maturation medium, and 2 weeks after desiccation. Maturation of somatic embryos (after 5 weeks) was accompanied by increase of concentrations of putrescine (2.3 times) and spermidine (3.2 times). In comparison with above mentioned polyamines, spermine concentrations were significantly lower (4.3 times). Two weeks after desiccation, the concentrations of putrescine decreased 5.4 times and spermidine 2.2 times in comparison with mature embryos. To improve the efficiency of somatic embryogenesis of less responsive genotypes, the supplementation of growth media by polyamines is discussed.


Sign in / Sign up

Export Citation Format

Share Document