Cloning of the Rearranged Variable Regions of Mouse Immunoglobulin Heavy and Light Chain Genes Using the Polymerase Chain Reaction

Author(s):  
J. Berdoz ◽  
J.-P. Kraehenbuhl
1993 ◽  
Vol 23 (1) ◽  
pp. 206-211 ◽  
Author(s):  
Catherine A. Kettleborough ◽  
José Saldanha ◽  
Keith H. Ansell ◽  
Mary M. Bendig

1993 ◽  
Vol 13 (2) ◽  
pp. 902-910 ◽  
Author(s):  
A M Rushforth ◽  
B Saari ◽  
P Anderson

We used the polymerase chain reaction to detect insertions of the transposon Tc1 into mlc-2, one of two Caenorhabditis elegans regulatory myosin light chain genes. Our goals were to develop a general method to identify mutations in any sequenced gene and to establish the phenotype of mlc-2 loss-of-function mutants. The sensitivity of the polymerase chain reaction allowed us to identify nematode populations containing rare Tc1 insertions into mcl-2. mlc-2::Tc1 mutants were subsequently isolated from these populations by a sib selection procedure. We isolated three mutants with Tc1 insertions within the mlc-2 third exon and a fourth strain with Tc1 inserted in nearby noncoding DNA. To demonstrate the generality of our procedure, we isolated two additional mutants with Tc1 insertions within hlh-1, the C. elegans MyoD homolog. All of these mutants are essentially wild type when homozygous. Despite the fact that certain of these mutants have Tc1 inserted within exons of the target gene, these mutations may not be true null alleles. All three of the mlc-2 mutants contain mlc-2 mRNA in which all or part of Tc1 is spliced from the pre-mRNA, leaving small in-frame insertions or deletions in the mature message. There is a remarkable plasticity in the sites used to splice Tc1 from these mlc-2 pre-mRNAs; certain splice sites used in the mutants are very different from typical eukaryotic splice sites.


1992 ◽  
Vol 152 (1) ◽  
pp. 89-104 ◽  
Author(s):  
M.Josefina Coloma ◽  
Alice Hastings ◽  
Letitia A. Wims ◽  
Sherie L. Morrison

2010 ◽  
Vol 100 (10) ◽  
pp. 1077-1088 ◽  
Author(s):  
Avijit Roy ◽  
G. Ananthakrishnan ◽  
John S. Hartung ◽  
R. H. Brlansky

The emerging diversity of Citrus tristeza virus (CTV) genotypes has complicated detection and diagnostic measures and prompted the search for new differentiation methods. To simplify the identification and differentiation of CTV genotypes, a multiplex reverse-transcription polymerase chain reaction (RT-PCR) technique for the screening of CTV isolates was developed. Variable regions within the open reading frame (ORF)-1a of diverse CTV genotypes were identified to develop first a simplex (S) and then a hexaplex (H) RT-PCR. CTV isolates have been grouped previously into five genotypes (namely, T3, T30, T36, VT, and B165) based on the nucleotide sequence comparisons and phylogenetic analyses. Nucleotide sequences from GenBank were used to design species and genotype-specific primers (GSPs). The GSPs were initially used for reliable detection of all CTV genotypes using S-RT-PCR. Furthermore, detection of all five recognized CTV genotypes was established using the H-RT-PCR. Six amplicons, one generic to all CTV isolates and one for each of the five recognized genotypes, were identified on the basis of their size and were confirmed by sequence analysis. In all, 175 CTV isolates from 29 citrus-growing countries were successfully analyzed by S- and H-RT-PCR. Of these, 97 isolates contained T36 genotypes, 95 contained T3 genotypes, 76 contained T30 genotypes, 71 contained VT genotypes, and 24 contained B165 genotype isolates. In total, 126 isolates contained mixed infections of 2 to 5 of the known CTV genotypes. Two of the CTV isolates could not be assigned to a known genotype. H-RT-PCR provides a sensitive, specific, reliable, and rapid way to screen for CTV genotypes compared with other methods for CTV genotype detection. Efficient identification of CTV genotypes will facilitate a better understanding of CTV isolates, including the possible interaction of different genotypes in causing or preventing diseases. The methods described can also be used in virus-free citrus propagation programs and in the development of CTV-resistant cultivars.


Gene ◽  
1991 ◽  
Vol 106 (2) ◽  
pp. 273-277 ◽  
Author(s):  
Winfried Weissenhorn ◽  
Elisabeth Weiss ◽  
Marina Schwirzke ◽  
Brigitte Kaluza ◽  
Ulrich H. Weidle

1999 ◽  
Vol 155 (2) ◽  
pp. 355-363 ◽  
Author(s):  
Jerry Z. Gong ◽  
Sherman Zheng ◽  
Roberto Chiarle ◽  
Christine De Wolf-Peeters ◽  
Giorgio Palestro ◽  
...  

2006 ◽  
Vol 96 (6) ◽  
pp. 637-647 ◽  
Author(s):  
K. L. Schroeder ◽  
P. A. Okubara ◽  
J. T. Tambong ◽  
C. A. Lévesque ◽  
T. C. Paulitz

Traditional methods of quantifying Pythium spp. rely on the use of selective media and dilution plating. However, high variability is inherent in this type of enumeration and counts may not be representative of the pathogenic population of Pythium spp. Variable regions of the internal transcribed spacer of the rDNA were used to design species-specific primers for detection and quantification of nine Pythium spp. from soils in eastern Washington. Primer pairs were designed for Pythium abappressorium, P. attrantheridium, P. heterothallicum, P. irregulare group I, P. irregulare group IV, P. paroecandrum, P. rostratifingens, P. sylvaticum, and P. ultimum and used with real-time polymerase chain reaction. Standard curves were generated for each of the species using SYBR Green I fluorescent dye for detection of amplification. Seventy-seven isolates of Pythium were screened to confirm specificity of each primer set. DNA was extracted from soil and standard curves were generated for P. irregulare group I, P. irregulare group IV, and P. ultimum to correlate populations of each species in the soil with quantities of DNA amplified from the same soil. Examination of raw field soils revealed results similar to those observed in previous studies. This new technique for the quantification of Pythium spp. is rapid and accurate, and will be a useful tool in the future study of these pathogenic Pythium spp.


Sign in / Sign up

Export Citation Format

Share Document