Structural Kinship of Photosynthetic Reaction Centers: Resonance Raman Studies of the Primary Electron Acceptors of Green and Purple Bacteria and of Photosystem II

Author(s):  
Ute Feiler ◽  
Bruno Robert ◽  
Tony A. Mattioli ◽  
Pierre Moenne-Loccoz ◽  
Marc Lutz
2011 ◽  
Vol 286 (18) ◽  
pp. 15964-15972 ◽  
Author(s):  
Matthias Broser ◽  
Carina Glöckner ◽  
Azat Gabdulkhakov ◽  
Albert Guskov ◽  
Joachim Buchta ◽  
...  

Herbicides that target photosystem II (PSII) compete with the native electron acceptor plastoquinone for binding at the QB site in the D1 subunit and thus block the electron transfer from QA to QB. Here, we present the first crystal structure of PSII with a bound herbicide at a resolution of 3.2 Å. The crystallized PSII core complexes were isolated from the thermophilic cyanobacterium Thermosynechococcus elongatus. The used herbicide terbutryn is found to bind via at least two hydrogen bonds to the QB site similar to photosynthetic reaction centers in anoxygenic purple bacteria. Herbicide binding to PSII is also discussed regarding the influence on the redox potential of QA, which is known to affect photoinhibition. We further identified a second and novel chloride position close to the water-oxidizing complex and in the vicinity of the chloride ion reported earlier (Guskov, A., Kern, J., Gabdulkhakov, A., Broser, M., Zouni, A., and Saenger, W. (2009) Nat. Struct. Mol. Biol. 16, 334–342). This discovery is discussed in the context of proton transfer to the lumen.


2004 ◽  
Vol 108 (29) ◽  
pp. 10566-10580 ◽  
Author(s):  
Stephanie L. Gould ◽  
Gerdenis Kodis ◽  
Rodrigo E. Palacios ◽  
Linda de la Garza ◽  
Alicia Brune ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yin Song ◽  
Riley Sechrist ◽  
Hoang H. Nguyen ◽  
William Johnson ◽  
Darius Abramavicius ◽  
...  

AbstractPhotochemical reaction centers are the engines that drive photosynthesis. The reaction center from heliobacteria (HbRC) has been proposed to most closely resemble the common ancestor of photosynthetic reaction centers, motivating a detailed understanding of its structure-function relationship. The recent elucidation of the HbRC crystal structure motivates advanced spectroscopic studies of its excitonic structure and charge separation mechanism. We perform multispectral two-dimensional electronic spectroscopy of the HbRC and corresponding numerical simulations, resolving the electronic structure and testing and refining recent excitonic models. Through extensive examination of the kinetic data by lifetime density analysis and global target analysis, we reveal that charge separation proceeds via a single pathway in which the distinct A0 chlorophyll a pigment is the primary electron acceptor. In addition, we find strong delocalization of the charge separation intermediate. Our findings have general implications for the understanding of photosynthetic charge separation mechanisms, and how they might be tuned to achieve different functional goals.


2021 ◽  
Author(s):  
Yin Song ◽  
Riley Sechrist ◽  
Hoang Huy Nguyen ◽  
William Johnson ◽  
Darius Abramavičius ◽  
...  

<p>Photochemical reaction centers are the engines that drive photosynthesis. The reaction center from heliobacteria (HbRC) has been proposed to most closely resemble the common ancestor of photosynthetic reaction centers, motivating a detailed understanding of its structure-function relationship. The recent elucidation of the HbRC crystal structure motivates advanced spectroscopic studies of its excitonic structure and charge separation mechanism. We perform multispectral two-dimensional electronic spectroscopy of the HbRC and corresponding numerical simulations, resolving the electronic structure and testing and refining recent excitonic models. Through extensive examination of the kinetic data by lifetime density analysis and global target analysis, we reveal that charge separation proceeds via a single pathway in which the distinct A<sub>0 </sub>chlorophyll <i>a</i> pigment is the primary electron acceptor. In addition, we find strong delocalization of the initial excited state and charge separation intermediate. Our findings have general implications for the understanding of photosynthetic charge separation mechanisms, and how they might be tuned to achieve different functional goals.</p>


Sign in / Sign up

Export Citation Format

Share Document