Optimal Angular Coordinate Measurements by Optical Location

Author(s):  
Lev B. Levitin
2019 ◽  
pp. 3-8
Author(s):  
N.Yu. Bobrovskaya ◽  
M.F. Danilov

The criteria of the coordinate measurements quality at pilot-experimental production based on contemporary methods of quality management system and traditional methods of the measurements quality in Metrology are considered. As an additional criterion for quality of measurements, their duration is proposed. Analyzing the problem of assessing the quality of measurements, the authors pay particular attention to the role of technological heredity in the analysis of the sources of uncertainty of coordinate measurements, including not only the process of manufacturing the part, but all stages of the development of design and technological documentation. Along with such criteria as the degree of confidence in the results of measurements; the accuracy, convergence, reproducibility and speed of the results must take into account the correctness of technical specification, and such characteristics of the shape of the geometric elements to be controlled, such as flatness, roundness, cylindrical. It is noted that one of the main methods to reduce the uncertainty of coordinate measurements is to reduce the uncertainty in the initial data and measurement conditions, as well as to increase the stability of the tasks due to the reasonable choice of the basic geometric elements (measuring bases) of the part. A prerequisite for obtaining reliable quality indicators is a quantitative assessment of the conditions and organization of the measurement process. To plan and normalize the time of measurements, the authors propose to use analytical formulas, on the basis of which it is possible to perform quantitative analysis and optimization of quality indicators, including the speed of measurements.


Author(s):  
F. L. Litvin ◽  
Y. Zhang ◽  
J. Kieffer ◽  
R. F. Handschuh

Abstract The authors propose an approach that uses coordinate measurements of the real surface to: (i) determine the real applied machine-tool settings, (ii) determine the deviations of the real surface from the theoretical one, (iii) minimize the deviations by correction of the machine-tool settings, and (iv) represent the real surface analytically in the same Gaussian coordinates as the theoretical one.


Author(s):  
V. M. Kutuzov ◽  
M. A. Ovchinnikov ◽  
E. A. Vinogradov

Introduction. In the case of a nonuniform (NU) design of the antenna elements (AEs) of the receiving antenna array (AA), the antenna pattern (AP) features sidelobes (SL) with a significantly higher noise level than acceptable values. Under low signal-to-noise ratios (SNR), this noise leads to angular coordinate measuring errors thus worsening the statistical accuracy characteristics (ACs) of the signal. It is of relevance to construct the ACs of angular coordinates when a modified parametric Burg method (BM) is applied to spatial reflected signal processing in a transportable decametre range radar (DRR) with a nonuniform array (NUA) and linear accuracy characteristics. Aim. To analyse the statistical ACs of angular coordinate objects when using a modified BM for spatial reflected signal processing in a DRR with a linear NUA, in which AEs are located with a random step in the range from λ/2 to several λ, where λ is the operating carrier wavelength.Materials and methods. Statistical ACs were constructed by computer modelling in the MatLab software, the reliability of which was confirmed by conventional discrete Fourier transform methods, as well as by comparing the obtained ACs with asymptotic bounds, including Cramer-Rao bounds.Results. The possibility and conditions of using a modified parametric BM for estimating the azimuthal coordinates of reflected radar signals were determined for the case of a nonuniform design of the over-the-horizon DRR receiving AA AEs. Statistical ACs were obtained and compared with the asymptotically optimal ACs of the maximum likelihood estimations corresponding to the uniform AE design.Conclusion. The obtained results confirm the suboptimality of the BM modified for signal processing in the NUA at a random AE spacing step in the range from λ/2 to 2λ, making it applicable for use in transportable DRRs.


Author(s):  
T. Sieberth ◽  
R. Wackrow ◽  
J. H. Chandler

Unmanned aerial vehicles (UAVs) have become an interesting and active research topic in photogrammetry. Current research is based on image sequences acquired by UAVs which have a high ground resolution and good spectral resolution due to low flight altitudes combined with a high-resolution camera. One of the main problems preventing full automation of data processing of UAV imagery is the unknown degradation effect of blur caused by camera movement during image acquisition. <br><br> The purpose of this paper is to analyse the influence of blur on photogrammetric image processing, the correction of blur and finally, the use of corrected images for coordinate measurements. It was found that blur influences image processing significantly and even prevents automatic photogrammetric analysis, hence the desire to exclude blurred images from the sequence using a novel filtering technique. If necessary, essential blurred images can be restored using information of overlapping images of the sequence or a blur kernel with the developed edge shifting technique. The corrected images can be then used for target identification, measurements and automated photogrammetric processing.


1993 ◽  
Vol 115 (4) ◽  
pp. 995-1001 ◽  
Author(s):  
F. L. Litvin ◽  
C. Kuan ◽  
J. C. Wang ◽  
R. F. Handschuh ◽  
J. Masseth ◽  
...  

The deviations of a gear’s real tooth surface from the theoretical surface are determined by coordinate measurements at the grid of the surface. A method has been developed to transform the deviations from Cartesian coordinates to those along the normal at the measurement locations. Equations are derived that relate the first order deviations with the adjustment to the manufacturing machine tool settings. The deviations of the entire surface are minimized. The minimization is achieved by application of the least-square method for an overdetermined system of linear equations. The proposed method is illustrated with a numerical example for hypoid gear and pinion.


Sign in / Sign up

Export Citation Format

Share Document