Characteristic Chemical Features and Biogeochemical Cycles in the Black Sea

Author(s):  
Ö. Baştürk ◽  
E. Yakushev ◽  
S. Tuğrul ◽  
İ. Salihoğlu
2020 ◽  
Vol 5 (3) ◽  
pp. 4-10
Author(s):  
Yu. G. Artemov

“Breath of earth” in the form of methane gas bubble streams from a seabed (methane seeps, bubble emanations) is a planetary phenomenon that was noticed only at the end of the XX century. The study of this phenomenon, being an important link in processes of lithosphere, hydrosphere, atmosphere, and biosphere interaction, is relevant to date. In this work, methane fluxes were determined in the known area of intense methane occurrences of biogenic nature, geographically tied to Dnieper River paleochannel in the northwest of the Black Sea. Bubbling (free) methane flux from anaerobic to aerobic waters in the active methane seeps area of Dnieper River paleochannel in the depth range of 140–725 m is estimated averagely as 1.2·10³ m³·km−2·year−1 (STP), or 2.8 % of bubbling methane emitted from a seabed. The value of the investigated flux was 4.2 % of the specific flux of bubbling methane to a water column on shelf depths (less than 140 m) in the same area. Methane flux estimate, obtained in this work, seems to be a significant environmental factor in conditions of strong stratification of Black Sea waters, where methane transfer by gas bubble streams is the main mechanism for introducing deep-water methane into biogeochemical cycles and carbon transformation processes of Black Sea aerobic zone.


2018 ◽  
Vol 84 (10) ◽  
Author(s):  
Kevin W. Becker ◽  
Felix J. Elling ◽  
Jan M. Schröder ◽  
Julius S. Lipp ◽  
Tobias Goldhammer ◽  
...  

ABSTRACTThe stratified water column of the Black Sea serves as a model ecosystem for studying the interactions of microorganisms with major biogeochemical cycles. Here, we provide detailed analysis of isoprenoid quinones to study microbial redox processes in the ocean. In a continuum from the photic zone through the chemocline into deep anoxic sediments of the southern Black Sea, diagnostic quinones and inorganic geochemical parameters indicate niche segregation between redox processes and corresponding shifts in microbial community composition. Quinones specific for oxygenic photosynthesis and aerobic respiration dominate oxic waters, while quinones associated with thaumarchaeal ammonia oxidation and bacterial methanotrophy, respectively, dominate a narrow interval in suboxic waters. Quinone distributions indicate highest metabolic diversity within the anoxic zone, with anoxygenic photosynthesis being a major process in its photic layer. In the dark anoxic layer, quinone profiles indicate the occurrence of bacterial sulfur and nitrogen cycling, archaeal methanogenesis, and archaeal methanotrophy. Multiple novel ubiquinone isomers, possibly originating from unidentified intra-aerobic anaerobes, occur in this zone. The respiration modes found in the anoxic zone continue into shallow subsurface sediments, but quinone abundances rapidly decrease within the upper 50 cm below the sea floor, reflecting the transition to lower energy availability. In the deep subseafloor sediments, quinone distributions and geochemical profiles indicate archaeal methanogenesis/methanotrophy and potentially bacterial fermentative metabolisms. We observed that sedimentary quinone distributions track lithology, which supports prior hypotheses that deep biosphere community composition and metabolisms are determined by environmental conditions during sediment deposition.IMPORTANCEMicroorganisms play crucial roles in global biogeochemical cycles, yet we have only a fragmentary understanding of the diversity of microorganisms and their metabolisms, as the majority remains uncultured. Thus, culture-independent approaches are critical for determining microbial diversity and active metabolic processes. In order to resolve the stratification of microbial communities in the Black Sea, we comprehensively analyzed redox process-specific isoprenoid quinone biomarkers in a unique continuous record from the photic zone through the chemocline into anoxic subsurface sediments. We describe an unprecedented quinone diversity that allowed us to detect distinct biogeochemical processes, including oxygenic photosynthesis, archaeal ammonia oxidation, aerobic methanotrophy, and anoxygenic photosynthesis in defined geochemical zones.


1979 ◽  
Vol 40 (C2) ◽  
pp. C2-445-C2-448
Author(s):  
D. Barb ◽  
L. Diamandescu ◽  
M. Morariu ◽  
I. I. Georgescu

Author(s):  
Eleonora P. Radionova

The associations and ecological conditions of the existence of modern diatoms of the North-West (Pridneprovsky), Prikerchensky and Eastern regions of the subtidal zone of the Black Sea are considered. Based on the unity of the composition of the Present and Sarmatian-Meotian diatom flora, an attempt has been made to model some of the ecological c situation of the Late Miocene Euxinian basin.


2002 ◽  
Vol 8 (2-3) ◽  
pp. 231-238
Author(s):  
G.K. Korotaev ◽  
◽  
M.E. Li ◽  
G.A. Tolkachenko ◽  
◽  
...  

2020 ◽  
Vol 42 (4) ◽  
pp. 33-49
Author(s):  
O.V. CHEPIZHKO ◽  
V.V. YANKO ◽  
V.M. KADURIN ◽  
I.M. NAUMKO ◽  
S.M. SHATALIN

For the first time the importance of mineralogical and lithological-petrographical ranks in the line of geological information ranks is substantiated for implementation of long-term forecasts, standard and non-standard approaches to research of physical and geochemical parameters as a basis of creation of complex system of forecast criteria and prospecting indicators of hydrocarbons within the sedimentary cover of Black sea based on the theory of global fluid-flows derivation. These criteria have different sensitivity to the object (hydrocarbon deposits) and are therefore ranked. The ranking determined the following parameters: 1) seismic data within the object, obtained by the method of deep seismic sounding, RWM SDP; 2) parameters of tectono-geodynamic structures; 3) the main characteristics of sedimentary cover and bedrock; 4) geochemical characteristics; 5) parameters of mineral complexes and fluid inclusions in mineral neoformations; 6) the value of the distribution of meiobenthos. Based on modern views of oil and gas geology, structural-tectonic and lithological-facies criteria are among the main ones. The study of the mineralogical component of sediments is made with using mineralogical, thermobarogeochemical and X-ray spectral methods. Fixation of anomalies of fluid flow at the bottom of the Black Sea as to the distribution of abiotic parameters in order to assess the prospects of oil and gas is determined by structural and tectonic features and high permeability of fluid flow; parameters of mineral complexes (minerals, facies) and genetic connections; heterogeneity of geochemical characteristics of bottom sediments; the presence of hydrocarbon inclusions in authigenic minerals of bottom sediments.


Sign in / Sign up

Export Citation Format

Share Document