Maintenance of transposable element copy number in natural populations of Drosophila melanogaster and D. simulans

Author(s):  
Christian Biémont ◽  
Cristina Vieira ◽  
Christine Hoogland ◽  
Géraldine Cizeron ◽  
Catherine Lœvenbruck ◽  
...  
2020 ◽  
Author(s):  
Zachary Tiedeman ◽  
Sarah Signor

AbstractTransposable elements are an important element of the complex genomic ecosystem, proving to be both adaptive and deleterious - repressed by the piRNA system and fixed by selection. Transposable element insertion also appears to be bursty – either due to invasion of new transposable elements that are not yet repressed, de-repression due to instability of organismal defense systems, stress, or genetic variation in hosts. Here, we characterize the transposable element landscape in an important model Drosophila, D. serrata, and investigate variation in transposable element copy number between genotypes and in the population at large. We find that a subset of transposable elements are clearly related to elements annotated in D. melanogaster and D. simulans, suggesting they spread between species more recently than other transposable elements. We also find that transposable elements do proliferate in particular genotypes, and that often if an individual is host to a proliferating transposable element, it is host to more than one proliferating transposable element. In addition, if a transposable element is active in a genotype, it is often active in more than one genotype. This suggests that there is an interaction between the host and the transposable element, such as a permissive genetic background and the presence of potentially active transposable element copies. In natural populations an active transposable element and a permissive background would not be held in association as in inbred lines, suggesting the magnitude of the burst would be much lower. Yet many of the inbred lines have actively proliferating transposable elements suggesting this is an important mechanism by which transposable elements maintain themselves in populations.


Evolution ◽  
2003 ◽  
Vol 57 (1) ◽  
pp. 159-167 ◽  
Author(s):  
Christian Biémont ◽  
Christiane Nardon ◽  
Grégory Deceliere ◽  
David Lepetit ◽  
Catherine Lœvenbruck ◽  
...  

1988 ◽  
Vol 52 (3) ◽  
pp. 223-235 ◽  
Author(s):  
Charles H. Langley ◽  
Elizabeth Montgomery ◽  
Richard Hudson ◽  
Norman Kaplan ◽  
Brian Charlesworth

SummaryA population genetics model of the role of asymmetric pairing and unequal exchange in the stabilization of transposable element copy number in natural populations is proposed and analysed. Monte Carlo simulations indicate that the approximations incorporated into the analysis are robust in the relevant parameter ranges. Given several simple assumptions concerning transposition and excision, equal and unequal exchange, and chromosome structure, predictions of the relative numbers of transposable elements in various regions of the Drosophila melanogaster genome are compared to the observed distribution of roo/B104 elements across chromosomal regions with differing rates of exchange, and between X chromosomes and autosomes. There is no indication of an accumulation of elements in the distal regions of chromosomes, which is expected if unequal exchange is reduced concomitantly with normal crossing over in the distal regions. There is, however, an indication of an excess of elements relative to physical length in the proximal regions of the chromosomes, which also have restricted crossing over. This observation is qualitatively consistent with the model's predictions. The observed distribution of elements between the mid-sections of the X chromosomes and autosomes is consistent with the predictions of one of two models of unequal exchange.


Evolution ◽  
2003 ◽  
Vol 57 (1) ◽  
pp. 159 ◽  
Author(s):  
Christian Biémont ◽  
Christiane Nardon ◽  
Grégory Deceliere ◽  
David Lepetit ◽  
Catherine Lœvenbruck ◽  
...  

1994 ◽  
Vol 63 (2) ◽  
pp. 139-144 ◽  
Author(s):  
Sergey V. Nuzhdin ◽  
Trudy F. C. Mackay

SummaryRates of transposition and excision of the Drosophila melanogaster retrotransposon elements mdg3, 297, Doc, roo and copia were estimated directly, by in situ hybridization analysis of their cytological insertion sites in 31 replicates of a highly inbred line that had accumulated spontaneous mutations for approximately 160generations. Estimated transposition rates of Doc, roo and copia were, respectively, 4·2 × 10−5, 3·1 × 10−3 and 1·3 − 10−3; no transpositions of 297 nor mdg3 were observed. Rates of transposition of copia varied significantly among sublines. Excisions were only observed for roo elements, at a rate of 9·0 × 10−6 per element per generation. Copy number averaged over these element families increased 5·9 %; therefore, in these lines the magnitude of the forces opposing transposable element multiplication were weaker than transposition rates.


1992 ◽  
Vol 59 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Walter F. Eanes ◽  
Cedric Wesley ◽  
Brian Charlesworth

SummaryThe accumulation of a transposable element inside chromosomal inversions is examined theoretically by a mathematical model, and empirically by counts of P elements associated with inversion polymorphisms in natural populations of Drosophila melanogaster. The model demonstrates that, if heterozygosity for an inversion effectively reduces element associated production of detrimental chromosome rearrangements, a differential accumulation of elements is expected, with increased copy number inside the minority inversion. Several-fold differential accumulations are possible with certain parameter values. We present data on P element counts for inversion polymorphisms on all five chromosome arms of 157 haploid genomes from two African populations. Our observations show significantly increased numbers of elements within the regions associated with the least common, or minority arrangements, in natural inversion polymorphisms.


2019 ◽  
Author(s):  
Danny E. Miller

ABSTRACTGenetic stability depends on the maintenance of a variety of chromosome structures and the precise repair of DNA breaks. During meiosis, programmed double-strand breaks (DSBs) made in prophase I are normally repaired as gene conversions or crossovers. Additionally, DSBs are made by the movement of transposable elements (TEs), which must also be resolved. Incorrect repair of these DNA lesions can lead to mutations, copy number variations, translocations, and/or aneuploid gametes. In Drosophila melanogaster, as in most organisms, meiotic DSB repair occurs in the presence of a rapidly evolving multiprotein structure called the synaptonemal complex (SC). Here, whole-genome sequencing is used to investigate the fate of meiotic DSBs in D. melanogaster mutant females lacking functional SC, to assay for de novo CNV formation, and to examine the role of the SC in transposable element movement in flies. The data indicate that, in the absence of SC, copy number variation still occurs but meiotic DSB repair by gene conversion may occur only rarely. Remarkably, an 856-kilobase de novo CNV was observed in two unrelated individuals of different genetic backgrounds and was identical to a CNV recovered in a previous wild-type study, suggesting that recurrent formation of large CNVs occurs in Drosophila. In addition, the rate of novel TE insertion was markedly higher than wild type in one of two SC mutants tested, suggesting that SC proteins may contribute to the regulation of TE movement and insertion in the genome. Overall, this study provides novel insight into the role that the SC plays in genome stability and provides clues as to why SC proteins are among the most rapidly evolving in any organism.


Sign in / Sign up

Export Citation Format

Share Document