a-SiC Thin Films Deposited Using Pulsed Laser Ablation of Graphite and Magnetron Sputtering of Silicon onto Steel Substrates at Room Temperature

Author(s):  
Josekutty J. Nainaparampil
Author(s):  
M. Grant Norton ◽  
Gerald R. English ◽  
Christopher Scarfone ◽  
C. Barry Carter

Barium titanate (BaTiO3) may be used in a number of thin-film applications in electronic and optoelectronic devices. For these devices the formation of epitactic films of the correct stoichiometry and phase is essential. In particular, the tetragonal form of BaTiO3, which is stable at room temperature, exhibits ferro-, pyro- and piezoelectric properties. It is desirable to form films of the tetragonal phase directly and thus to avoid formation of either amorphous or polycrystalline material or to form material of the non-ferroelectric cubic phase. Recently two techniques, pulsed-laser ablation and reactive evaporation, have been used to form BaTiO3 thin-films. In the present study BaTiO3 thin-films have been formed using the pulsed-laser ablation technique. Pulsed-laser ablation is now widely used to produce thin-films of the high temperature superconductors and has many advantages over other techniques, in particular the formation of films which maintain the stoichiometry of the target material and by controlling the processing conditions the formation of films having defined crystalline phases.


2006 ◽  
Vol 84 (1-2) ◽  
pp. 181-185 ◽  
Author(s):  
J.H. Ryu ◽  
J.-W. Yoon ◽  
K.B. Shim ◽  
N. Koshizaki

2006 ◽  
Vol 317-318 ◽  
pp. 585-588
Author(s):  
Seung Hwan Shim ◽  
Naoto Koshizaki ◽  
Jong Won Yoon ◽  
Kwang Bo Shim

Amorphous/pseudoamorphous GaN was prepared by pulsed-laser ablation at room temperature without any heat treatment. The structure and chemical composition of the specimens were systematically investigated. Laser ablation at low Ar pressure (<50Pa) led to deposition of smooth Ga-rich films, which is independent with laser energy. Under same pressures, as laser energy increased, the film stoichiometry changed from Ga-rich to near stoichiometric composition. Varying background Ar pressure strongly affected the product structure showing little effect on the chemical composition. Under higher pressure than 100 Pa, fine nanoparticles with a size of 5 nm rather than films were deposited on substrate due to the increased collision by plume confining. The optical band-gap of the deposited a-GaN is 2.8 eV for thin films and 3.9 eV for nanoparticles.


2007 ◽  
Vol 441 (1-2) ◽  
pp. 146-151 ◽  
Author(s):  
Jeong Ho Ryu ◽  
Sin Young Bang ◽  
Woo Sik Kim ◽  
Gyeong Seon Park ◽  
Kang Min Kim ◽  
...  

Author(s):  
M. Grant Norton ◽  
C. Barry Carter

Pulsed-laser ablation has been widely used to produce high-quality thin films of YBa2Cu3O7-δ on a range of substrate materials. The nonequilibrium nature of the process allows congruent deposition of oxides with complex stoichiometrics. In the high power density regime produced by the UV excimer lasers the ablated species includes a mixture of neutral atoms, molecules and ions. All these species play an important role in thin-film deposition. However, changes in the deposition parameters have been shown to affect the microstructure of thin YBa2Cu3O7-δ films. The formation of metastable configurations is possible because at the low substrate temperatures used, only shortrange rearrangement on the substrate surface can occur. The parameters associated directly with the laser ablation process, those determining the nature of the process, e g. thermal or nonthermal volatilization, have been classified as ‘primary parameters'. Other parameters may also affect the microstructure of the thin film. In this paper, the effects of these ‘secondary parameters' on the microstructure of YBa2Cu3O7-δ films will be discussed. Examples of 'secondary parameters' include the substrate temperature and the oxygen partial pressure during deposition.


2001 ◽  
Vol 177 (1-2) ◽  
pp. 73-77 ◽  
Author(s):  
K.T Hillie ◽  
C Curren ◽  
H.C Swart

Sign in / Sign up

Export Citation Format

Share Document