Second Order Modelling of Variable Density Jets: Favre Averaged Closures Versus Reynolds Averaged Closures

Author(s):  
E. Ruffin ◽  
R. Schiestel ◽  
F. Anselmet
1994 ◽  
Vol 279 ◽  
pp. 239-278 ◽  
Author(s):  
P. Chassaing ◽  
G. Harran ◽  
L. Joly

This paper is devoted to the analysis of the turbulent mass flux and, more generally, of the density fluctuation correlation (d.f.c.) effects in variable-density fluid motion. The situation is restricted to the free turbulent binary mixing of an inhomogeneous round jet discharging into a quiescent atmosphere. Based on conventional (Reynolds) averaging, a ternary regrouping of the correlations occurring in the statistical averaging of the open equations is first introduced. Then an exact algebraic relationship between the d.f.c. terms and the second-order moments is demonstrated. Some consequences of this result on the global behaviour of variable-density jets are analytically discussed. The effects of the d.f.c. terms are shown to give a qualitative explanation of the influence of the ratio of the densities of the inlet jet and ambient fluid on the centerline decay rates of mean velocity and mass fraction, the entrainment rate and the restructuring of the jet. Finally, the sensitivity of second-order modelling to the d.f.c. terms is illustrated and it is suggested that such terms should be considered as independent variables in the closing procedure.


2017 ◽  
Vol 6 (2) ◽  
pp. 121-145 ◽  
Author(s):  
Marcelo M. Cavalcanti ◽  
Valéria N. Domingos Cavalcanti ◽  
Irena Lasiecka ◽  
Claudete M. Webler

AbstractWe consider the long-time behavior of a nonlinear PDE with a memory term which can be recast in the abstract form$\frac{d}{dt}\rho(u_{t})+Au_{tt}+\gamma A^{\theta}u_{t}+Au-\int_{0}^{t}g(s)Au(t% -s)=0,$where A is a self-adjoint, positive definite operator acting on a Hilbert space H, ${\rho(s)}$ is a continuous, monotone increasing function, and the relaxation kernel ${g(s)}$ is a continuous, decreasing function in ${L_{1}(\mathbb{R}_{+})}$ with ${g(0)>0}$. Of particular interest is the case when ${A=-\Delta}$ with appropriate boundary conditions and ${\rho(s)=|s|^{\rho}s}$. This model arises in the context of solid mechanics accounting for variable density of the material. While finite energy solutions of the underlying PDE solutions exhibit exponential decay rates when strong damping is active (${\gamma>0,\theta=1}$), this uniform decay is no longer valid (by spectral analysis arguments) for dynamics subjected to frictional damping only, say, ${\theta=0}$ and ${g=0}$. In the absence of mechanical damping (${\gamma=0}$), the linearized version of the model reduces to a Volterra equation generated by bounded generators and, hence, it is exponentially stable for exponentially decaying kernels. The aim of the paper is to study intrinsic decays for the energy of the nonlinear model accounting for large classes of relaxation kernels described by the inequality ${g^{\prime}+H(g)\leq 0}$ with H convex and subject to the assumptions specified in (1.13) (a general framework introduced first in [1] in the context of linear second-order evolution equations with memory). In the context of frictional damping, such a framework was introduced earlier in [15], where it was shown that the decay rates of second-order evolution equations with frictional damping can be described by solutions of an ODE driven by a suitable convex function H which captures the behavior at the origin of the dissipation. The present paper extends this analysis to nonlinear equations with viscoelasticity. It is shown that the decay rates of the energy are intrinsically described by the solution of the dissipative ODE${S_{t}+c_{1}H(c_{2}S)=0}$with given intrinsic constants ${c_{1},c_{2}>0}$. The results obtained are sharp and they improve (by introducing a novel methodology) previous results in the literature (see [20, 19, 21, 6]) with respect to (i) the criticality of the nonlinear exponent ρ and (ii) the generality of the relaxation kernel.


1987 ◽  
Vol 180 (-1) ◽  
pp. 93 ◽  
Author(s):  
Tsan-Hsing Shih ◽  
John L. Lumley ◽  
J. Janicka

1992 ◽  
Vol 101 (2) ◽  
pp. 334-348 ◽  
Author(s):  
John B Bell ◽  
Daniel L Marcus

Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 848
Author(s):  
Ernesto Guerrero Fernández ◽  
Manuel Jesús Castro-Díaz ◽  
Tomás Morales de Luna

In this work, we consider a multilayer shallow water model with variable density. It consists of a system of hyperbolic equations with non-conservative products that takes into account the pressure variations due to density fluctuations in a stratified fluid. A second-order finite volume method that combines a hydrostatic reconstruction technique with a MUSCL second order reconstruction operator is developed. The scheme is well-balanced for the lake-at-rest steady state solutions. Additionally, hints on how to preserve a general class of stationary solutions corresponding to a stratified density profile are also provided. Some numerical results are presented, including validation with laboratory data that show the efficiency and accuracy of the approach introduced here. Finally, a comparison between two different parallelization strategies on GPU is presented.


Sign in / Sign up

Export Citation Format

Share Document