The Principle of Triality and A Distinguished Unitary Representation of SO(4,4)

Author(s):  
Bertram Kostant
2008 ◽  
Vol 19 (10) ◽  
pp. 1187-1201 ◽  
Author(s):  
MASAYASU MORIWAKI

Kazhdan, Kostant, Binegar–Zierau and Kobayashi–Ørsted constructed a distinguished infinite-dimensional irreducible unitary representation π of the indefinite orthogonal group G = O(2p, 2q) for p, q ≥ 1 with p + q > 2, which has the smallest Gelfand–Kirillov dimension 2p + 2q - 3 among all infinite-dimensional irreducible unitary representations of G and hence is called the minimal representation. We consider, for which subgroup G′ of G, the restriction π|G′ is multiplicity-free. We prove that the restriction of π to any subgroup containing the direct product group U(p1) × U(p2) × U(q) for p1, p2 ≥ 1 with p1 + p2 = p is multiplicity-free, whereas the restriction to U(p1) × U(p2) × U(q1) × U(q2) for q1, q2 ≥ 1 with q1 + q2 = q has infinite multiplicities.


2007 ◽  
Vol 22 (02n03) ◽  
pp. 645-648
Author(s):  
L. LEŚNIAK ◽  
R. KAMIŃSKI ◽  
B. EL-BENNICH ◽  
B. LOISEAU ◽  
A. FURMAN

Analysis of charged and neutral B meson decays into π+π-K, K+K-K and [Formula: see text] is performed using a unitary representation of the ππ and [Formula: see text] final state interactions. Comparison of the theoretical model with the experimental data of the Belle and BaBar Collaborations indicates that charming penguin contributions are necessary to describe the B → f0(980) K and B → ρ(770)0 K decays.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Sebastiano Carpi ◽  
Simone Del Vecchio ◽  
Stefano Iovieno ◽  
Yoh Tanimoto

AbstractWe show that any positive energy projective unitary representation of $$\mathrm{Diff}_+(S^1)$$ Diff + ( S 1 ) extends to a strongly continuous projective unitary representation of the fractional Sobolev diffeomorphisms $$\mathcal {D}^s(S^1)$$ D s ( S 1 ) for any real $$s>3$$ s > 3 , and in particular to $$C^k$$ C k -diffeomorphisms $$\mathrm{Diff}_+^k(S^1)$$ Diff + k ( S 1 ) with $$k\ge 4$$ k ≥ 4 . A similar result holds for the universal covering groups provided that the representation is assumed to be a direct sum of irreducibles. As an application we show that a conformal net of von Neumann algebras on $$S^1$$ S 1 is covariant with respect to $$\mathcal {D}^s(S^1)$$ D s ( S 1 ) , $$s > 3$$ s > 3 . Moreover every direct sum of irreducible representations of a conformal net is also $$\mathcal {D}^s(S^1)$$ D s ( S 1 ) -covariant.


Author(s):  
Bailin Song

Abstract We construct a filtration of chiral Hodge cohomolgy of a K3 surface $X$, such that its associated graded object is a unitary representation of the $\mathcal{N}=4$ superconformal vertex algebra with central charge $c=6$ and its subspace of primitive vectors has the property; its equivariant character for a symplectic automorphism $g$ of finite order acting on $X$ agrees with the McKay–Thompson series for $g$ in Mathieu moonshine.


1991 ◽  
Vol 123 ◽  
pp. 103-117 ◽  
Author(s):  
Jae-Hyun Yang

A certain nilpotent Lie group plays an important role in the study of the foundations of quantum mechanics ([Wey]) and of the theory of theta series (see [C], [I] and [Wei]). This work shows how theta series are applied to decompose the natural unitary representation of a Heisenberg group.


2007 ◽  
Vol 75 (2) ◽  
pp. 229-238 ◽  
Author(s):  
Astrid an Huef ◽  
S. Kaliszewski ◽  
Iain Raeburn

Suppose that H is a closed subgroup of a locally compact group G. We show that a unitary representation U of H is the restriction of a unitary representation of G if and only if a dual representation Û of a crossed product C*(G) ⋊ (G/H) is regular in an appropriate sense. We then discuss the problem of deciding whether a given representation is regular; we believe that this problem will prove to be an interesting test question in non-Abelian duality for crossed products of C*-algebras.


2018 ◽  
Vol 28 (05) ◽  
pp. 877-903
Author(s):  
Jordan Nikkel ◽  
Yunxiang Ren

Jones introduced unitary representations for the Thompson groups [Formula: see text] and [Formula: see text] from a given subfactor planar algebra. Some interesting subgroups arise as the stabilizer of certain vector, in particular the Jones subgroups [Formula: see text] and [Formula: see text]. Golan and Sapir studied [Formula: see text] and identified it as a copy of the Thompson group [Formula: see text]. In this paper, we completely describe [Formula: see text] and show that [Formula: see text] coincides with its commensurator in [Formula: see text], implying that the corresponding unitary representation is irreducible. We also generalize the notion of the Stallings 2-core for diagram groups to [Formula: see text], showing that [Formula: see text] and [Formula: see text] are not isomorphic, but as annular diagram groups they have very similar presentations.


Sign in / Sign up

Export Citation Format

Share Document