Application of Gauss-Seidel Iteration to the RLS Algorithm

Author(s):  
Ö. Morgül ◽  
A. Malaş
Keyword(s):  
Author(s):  
Faxin Qi ◽  
Xiangrong Tong ◽  
Lei Yu ◽  
Yingjie Wang

AbstractWith the development of the Internet and the progress of human-centered computing (HCC), the mode of man-machine collaborative work has become more and more popular. Valuable information in the Internet, such as user behavior and social labels, is often provided by users. A recommendation based on trust is an important human-computer interaction recommendation application in a social network. However, previous studies generally assume that the trust value between users is static, unable to respond to the dynamic changes of user trust and preferences in a timely manner. In fact, after receiving the recommendation, there is a difference between actual evaluation and expected evaluation which is correlated with trust value. Based on the dynamics of trust and the changing process of trust between users, this paper proposes a trust boost method through reinforcement learning. Recursive least squares (RLS) algorithm is used to learn the dynamic impact of evaluation difference on user’s trust. In addition, a reinforcement learning method Deep Q-Learning (DQN) is studied to simulate the process of learning user’s preferences and boosting trust value. Experiments indicate that our method applied to recommendation systems could respond to the changes quickly on user’s preferences. Compared with other methods, our method has better accuracy on recommendation.


2018 ◽  
Vol 7 (2.24) ◽  
pp. 492
Author(s):  
Sreevardhan Cheerla ◽  
D Venkata Ratnam

Due to rapid increase in demand for services which depends upon exact location of devices leads to the development of numerous Wi-Fi positioning systems. It is very difficult to find the accurate position of a device in indoor environment due to substantial development of structures. There are many algorithms to determine the indoor location but they require expensive software and hardware. Hence receiving signals strength (RSS) based algorithms are implemented to find the self-positioning. In this paper Newton-Raphson, Gauss-Newton and Steepest descent algorithms are implemented to find the accurate location of Wi-Fi receiver in Koneru Lakshmaiah (K L) University, Guntur, Andhra Pradesh, India. From the results it is evident that Newton -Raphson method is better in providing accurate position estimations. 


2021 ◽  
Vol 348 ◽  
pp. 01014
Author(s):  
Karim Saber ◽  
Alyen Abahazem ◽  
Nofel Merbahi ◽  
Mohamed Yousfi

In this work, an electrical model equivalent to the corona discharge reactor has been proposed in a multitips plan configuration, in dry air at atmospheric pressure. The electrical parameters evolution of the circuit are obtained by using the identification method which is based on the least squares recursive (RLS) algorithm, the estimated parameters allow us to describe the corona discharge behavior inside the reactor. The RLS method used during the determination of capacitance and resistance is validated by the comparison between the measured and the calculated currents, the significant forms of capacitance and resistance confirm the validity of the proposed electrical model. The estimated parameters of the electrical circuit allowed us to determine the discharge power, the power delivered to the reactor and thus the energy efficiency during the discharge, this efficiency increases during the propagation of streamers towards the plane, it reaches a maximum value which is equal to 50% in the case of the fourtips- plane configuration. The energy stored in the reactor is also calculated using the electrical circuit, it increases to a maximum value of 2.6 pJ, which is a very low value compared to the energy delivered to the reactor. This work allows us to control the discharge and lost energy during the corona discharge in the case of multi-tips-plane configuration.


2021 ◽  
Author(s):  
Slobodan Drašković ◽  
Željko Đurović ◽  
Vera Petrović

Author(s):  
V. Jagan Naveen ◽  
K. Murali Krishna ◽  
K. Raja Rajeswari

<p><span lang="EN-US">In Biotelemetry, Biomedical signal such as ECG is extremely important in the diagnosis of patients in remote location and is recorded commonly with noise. Considered attention is required for analysis of ECG signal to find the patho-physiology and status of patient. In this paper, LMS and RLS algorithm are implemented on adaptive FIR filter for reducing power line interference (50Hz) and (AWGN) noise on ECG signals .The ECG signals are randomly chosen from MIT_BIH data base and de-noising using algorithms. The peaks and heart rate of the ECG signal are estimated. The measurements are taken in terms of Signal Power, Noise Power and   Mean Square Error.</span></p>


Sign in / Sign up

Export Citation Format

Share Document