The Overstress Model Applied to Normal and Pathological Behavior of Some Engineering Alloys

Author(s):  
Erhard Krempl ◽  
Kwangsoo Ho
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kalifa Manjang ◽  
Shailesh Tripathi ◽  
Olli Yli-Harja ◽  
Matthias Dehmer ◽  
Galina Glazko ◽  
...  

AbstractThe identification of prognostic biomarkers for predicting cancer progression is an important problem for two reasons. First, such biomarkers find practical application in a clinical context for the treatment of patients. Second, interrogation of the biomarkers themselves is assumed to lead to novel insights of disease mechanisms and the underlying molecular processes that cause the pathological behavior. For breast cancer, many signatures based on gene expression values have been reported to be associated with overall survival. Consequently, such signatures have been used for suggesting biological explanations of breast cancer and drug mechanisms. In this paper, we demonstrate for a large number of breast cancer signatures that such an implication is not justified. Our approach eliminates systematically all traces of biological meaning of signature genes and shows that among the remaining genes, surrogate gene sets can be formed with indistinguishable prognostic prediction capabilities and opposite biological meaning. Hence, our results demonstrate that none of the studied signatures has a sensible biological interpretation or meaning with respect to disease etiology. Overall, this shows that prognostic signatures are black-box models with sensible predictions of breast cancer outcome but no value for revealing causal connections. Furthermore, we show that the number of such surrogate gene sets is not small but very large.


Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 98
Author(s):  
Ed J. Pickering ◽  
Alexander W. Carruthers ◽  
Paul J. Barron ◽  
Simon C. Middleburgh ◽  
David E.J. Armstrong ◽  
...  

The expanded compositional freedom afforded by high-entropy alloys (HEAs) represents a unique opportunity for the design of alloys for advanced nuclear applications, in particular for applications where current engineering alloys fall short. This review assesses the work done to date in the field of HEAs for nuclear applications, provides critical insight into the conclusions drawn, and highlights possibilities and challenges for future study. It is found that our understanding of the irradiation responses of HEAs remains in its infancy, and much work is needed in order for our knowledge of any single HEA system to match our understanding of conventional alloys such as austenitic steels. A number of studies have suggested that HEAs possess `special’ irradiation damage resistance, although some of the proposed mechanisms, such as those based on sluggish diffusion and lattice distortion, remain somewhat unconvincing (certainly in terms of being universally applicable to all HEAs). Nevertheless, there may be some mechanisms and effects that are uniquely different in HEAs when compared to more conventional alloys, such as the effect that their poor thermal conductivities have on the displacement cascade. Furthermore, the opportunity to tune the compositions of HEAs over a large range to optimise particular irradiation responses could be very powerful, even if the design process remains challenging.


2018 ◽  
Vol 64 (s1) ◽  
pp. S507-S516 ◽  
Author(s):  
Alejandra D. Alonso ◽  
Leah S. Cohen

2021 ◽  
Vol 44 (1) ◽  
Author(s):  
Christian Lüscher ◽  
Patricia H. Janak

Addiction is a disease characterized by compulsive drug seeking and consumption observed in 20–30% of users. An addicted individual will favor drug reward over natural rewards, despite major negative consequences. Mechanistic research on rodents modeling core components of the disease has identified altered synaptic transmission as the functional substrate of pathological behavior. While the initial version of a circuit model for addiction focused on early drug adaptive behaviors observed in all individuals, it fell short of accounting for the stochastic nature of the transition to compulsion. The model builds on the initial pharmacological effect common to all addictive drugs—an increase in dopamine levels in the mesolimbic system. Here, we consolidate this early model by integrating circuits underlying compulsion and negative reinforcement. We discuss the genetic and epigenetic correlates of individual vulnerability. Many recent data converge on a gain-of-function explanation for circuit remodeling, revealing blueprints for novel addiction therapies. Expected final online publication date for the Annual Review of Neuroscience, Volume 44 is July 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2018 ◽  
Vol 2018 ◽  
pp. 1-18 ◽  
Author(s):  
Vladimir S. Naumenko ◽  
Evgeni Ponimaskin

The majority of neuronal proteins involved in cellular signaling undergo different posttranslational modifications significantly affecting their functions. One of these modifications is a covalent attachment of a 16-C palmitic acid to one or more cysteine residues (S-palmitoylation) within the target protein. Palmitoylation is a reversible modification, and repeated cycles of palmitoylation/depalmitoylation might be critically involved in the regulation of multiple signaling processes. Palmitoylation also represents a common posttranslational modification of the neurotransmitter receptors, including G protein-coupled receptors (GPCRs) and ligand-gated ion channels (LICs). From the functional point of view, palmitoylation affects a wide span of neurotransmitter receptors activities including their trafficking, sorting, stability, residence lifetime at the cell surface, endocytosis, recycling, and synaptic clustering. This review summarizes the current knowledge on the palmitoylation of neurotransmitter receptors and its role in the regulation of receptors functions as well as in the control of different kinds of physiological and pathological behavior.


Sign in / Sign up

Export Citation Format

Share Document